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Summary

Despite their widespread use for various (chemical) processes and a vast
amount of research devoted to understand their behavior, detailed know-
ledge of bubble column reactors is still lacking. The highly complex interac-
tions between hydrodynamics, mass transfer and chemical reaction as well
as the wide range of both time and spatial scales prevailing in the reactor
make bubble column reactors challenging from a modelling point of view.
In this thesis, a multi-scale modelling approach in combination with an ad-
vanced parallel computing strategy is used to study the phenomena prevail-
ing at different scales. Two CFD models, namely a front tracking model and
an Eulerian-Lagrangian model are used to study the relevant phenomena
at different scales. The interactions between hydrodynamics, mass transfer
and chemical reactions are treated directly in each model taking into ac-
count the relevant coupling.
In order to study detailed hydrodynamics and mass transfer phenomena on
the level of individual bubbles, a three-dimensional front tracking model in
combination with an immersed boundary technique that explicitly accounts
for the bubble-liquid mass transfer process is developed. The model allows
us to a priori calculate mass transfer coefficients for bubbles (droplets) that
can be used as a closure to more coarse modelling techniques, such as the
Eulerian-Eulerian or Eulerian-Lagrangian techniques. Simulations are car-
ried out to demonstrate capabilities of the developed model to predict bubble
shape, flow field as well as transport of a species from the bubble to the liq-
uid phase. Furthermore, in a simulation employing multiple bubbles, we
found that bubbles rising in the wake of other bubbles will experience an
increase of rise velocity, while the mass transfer rate is decreased.
A three-dimensional discrete bubble model (DBM) is adopted to investigate
complex behavior involving hydrodynamics, mass transfer and chemical re-
actions in a gas-liquid bubble column reactor. In this model a continuum
description is adopted for the liquid phase and additionally each individual
bubble is tracked in a Lagrangian framework, while accounting for bubble-
bubble and bubble-wall interactions via an encounter model. The mass
transfer rate is calculated for each individual bubble using a surface re-
newal model accounting for the instantaneous and local properties of the
liquid phase in its vicinity. The spatial distributions of chemical species
residing in the liquid phase are computed from the coupled species bal-
ances considering the mass transfer from bubbles and reactions between
the species. The hydrodynamics part of the developed model is validated
with the experimental data of Deen et al. [Chem. Eng. Sci., 2001, 56, 6341]
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and is found to be in good agreement. Furthermore, the model is applied
to study the mixing and physical absorption of CO2 bubbles in water until
saturation of the liquid prevails.
For the purpose of validating the DBM to predict the hydrodynamics, mass
transfer and chemical reactions, a dedicated experimental setup consisting
of a pseudo-2D lab-scale bubble column reactor was constructed. A re-
versible two-step reaction system found in the chemisorption process of CO2

in an aqueous NaOH solution was studied both experimentally and nume-
rically using the developed DBM. The computational results are compared
with experimental data of bubble velocities, which were obtained with the
use of Particle Image Velocimetry. Furthermore, the influence of the mass
transfer and chemical reaction on the hydrodynamics, bubble size distribu-
tion and gas hold-up is also studied and compared with the experiment. It
is found that the model is able to predict the entire reaction process. The
prediction of the hydrodynamics without mass transfer is found to be accu-
rate. The model however seems to underpredict the overall mass transfer
process, which we believe, can be attributed to an inaccuracy of the mass
transfer closure being used in the present study. Nevertheless, the trends
of the influence of the mass transfer rate on the hydrodynamics have been
successfully captured by the present model.
As the simulations of bubble column reactors using the DBM taking into
account mass transfer and chemical reaction with relatively high gas hold-
up require excessive computer power, parallelization of the model is nec-
essary. A parallel algorithm applicable to the DBM was thus developed.
The model describing the dispersed phase dynamics accounts for bubble-
bubble collisions and is parallelized using a ’mirror domain’ technique while
the pressure Poisson equation for the continuous phase is solved using a
domain decomposition technique implemented in the PETSc library [Ref.
http://www.mcs.anl.gov/petsc]. The parallel algorithm is verified and it is
found that it gives the same results for both phases as compared to the se-
rial algorithm. Furthermore, the algorithm shows good scalability up to 32
processors. Using the proposed method, a homogeneous bubbly flow in a
laboratory scale bubble column can be simulated at very high gas hold-up
(up to 37%) while consuming a reasonable amount of calculation wall time.
Using the parallel version of the model, the role of the gas injection pattern
on the large scale structures in a homogeneous pseudo-2D bubble column
operated at relatively high gas hold-up is studied. Seven cases with different
inlet configurations have been studied experimentally by Harteveld et al. [In
Proc. CHISA, 2004]. Each of these cases has been simulated using the pa-
rallel version of DBM. The presence of coherent structures for both uniform
and non-uniform gas injection is studied. Furthermore, the influence of
the gas injection pattern on the dynamics is investigated, while the statisti-
cal (average and fluctuating) quantities are compared with the PIV/PTV and
LDA measurement data of Harteveld et al. The results show that the model
resembles the observed experimental flow structures to a large extent.



Samenvatting

Gedetailleerde kennis van bellenkolom reactoren ontbreekt nog steeds
ondanks het feit dat bellenkolommen in een grote verscheidenheid aan
(chemische) processen worden toegepast en er uitgebreid onderzoek is
verricht aan het gedrag in deze apparaten. De zeer complexe interacties
tussen de hydrodynamica, stofoverdracht en chemische reacties in
combinatie met de grote variatie in tijd- en lengteschalen die in de
reactor voorkomen, maakt het modelleren van bellenkolom reactoren
tot een uitdaging. In dit proefschrift wordt een aanpak van modellen op
verschillende schalen in combinatie met een geavanceerde parallellisatie
strategie gebruikt om de stromingsverschijnselen op verschillende schalen
te bestuderen. Twee numerieke stromingsmodellen, namelijk een
”front-tracking” model en een Euler-Lagrange model, worden gebruikt
om de relevante fenomenen op verschillende schalen te bestuderen. De
interactie tussen de hydrodynamica, stofoverdracht en chemische reacties
worden op een deterministische wijze in het model verdisconteerd, waarbij
de relevante koppeling in acht wordt genomen.
Een drie-dimensionaal ”front tracking” model gecombineerd met een
”immersed boundary” techniek is ontwikkeld om de hydrodynamica
en stofoverdracht op het niveau van individuele bellen in detail te
bestuderen. Het gecombineerde model beschrijft op expliciete wijze de
bel-vloeistof stofoverdracht. Het model stelt ons in staat om a priori de
stofoverdrachtscoëfficiënten voor bellen (of druppels) te berekenen, welke
gebruikt kunnen worden om sluitingsrelaties op te stellen voor meer
grofstoffelijke modeleertechnieken, zoals Euler-Euler of Euler-Lagrange
technieken. De mogelijkheden van het model voor het voorspellen
van de belvorm, het stromingsveld en het gas-vloeistof stoftransport
zijn aan de hand van een aantal simulaties gedemonstreerd. Uit de
simulatieresultaten van een systeem met meerdere bellen bleek dat bellen
die in de zog van andere bellen stijgen, een hogere stijgsnelheid en een
lagere stofoverdrachtssnelheid vertonen.
Een drie-dimensionaal ”discrete bubble model” (DBM) is gebruikt om het
ingewikkelde gedrag van gas-vloeistof bellenkolommen ten aanzien van
hydrodynamica, stofoverdracht en chemische reacties te onderzoeken. In
dit model wordt een continuë beschrijving van de vloeistoffase gebruikt.
Verder wordt iedere individuele bel op een Lagrangiaanse wijze gevolgd,
waarbij rekening wordt gehouden met bel-bel en bel-wand interacties
door middel van een botsingsmodel. De stofoverdrachtssnelheid wordt
voor elke individuele bel berekend met behulp van een ”surface renewal
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model” dat gebruik maakt van de lokale instantane eigenschappen van
de vloeistoffase in de nabijheid van de bel. De ruimtelijke verdeling van
de chemische componenten in de vloeistoffase wordt berekend uit de
gekoppelde componentbalansen waarin rekening wordt gehouden met
de stofoverdracht van de bellen naar de vloeistof en de chemische
reacties tussen de componenten. Het hydrodynamische gedeelte van het
ontwikkelde model is gevalideerd aan de hand van experimentele data van
Deen et al. [Chem. Eng. Sci., 2001, 56, 6341] en blijkt goed overeen te
komen. Voorts is het model toegepast om menging en fysische absorptie
van CO2 bellen in water te bestuderen, totdat verzadiging van de vloeistof
optreedt.
Om de kwaliteiten van het DBM voor het voorspellen van de
hydrodynamica, stofoverdracht en chemische reacties te valideren is een
experimentele opstelling gebouwd, bestaande uit een quasi-2D lab-schaal
bellenkolom. Het reversibele twee-staps reactiesysteem van de chemisorptie
van CO2 in een waterige NaOH oplossing werd zowel experimenteel als
numeriek bestudeerd met behulp van het DBM. De numerieke resultaten
zijn vergeleken met de experimenteel bepaalde belsnelheden, welke werden
gemeten met behulp van ”Particle Image Velocimetry”. Verder is de
invloed van de stofoverdracht en chemische reactie op de hydrodynamica,
belgrootteverdeling en gas volumefractie bestudeerd en vergeleken met de
experimentele observaties. Het blijkt dat het model goed in staat is om het
gehele reactieve proces te voorspellen. De berekende simulatieresultaten
van de hydrodynamica in afwezigheid van stofoverdracht zijn zeer
accuraat. Het model lijkt daarentegen het gehele stofoverdrachtsproces
te onderschatten, wat naar alle waarschijnlijkheid kan worden toegedicht
aan de onzekerheid in het sluitingsmodel voor de stofoverdracht die in
deze studie is gebruikt. Desondanks is de invloed van de stofoverdracht
en chemische reactie op de hydrodynamica op succesvolle wijze door het
model voorspeld.
Parallelisatie van het DBM is noodzakelijk voor het uitvoeren van
bellenkolom simulaties inclusief stofoverdracht en chemische reactie
bij een relatief hoge gas volumefractie, aangezien deze simulaties een
excessieve hoeveelheid rekenkracht vergen. Om deze reden is een parallel
algoritme voor het DBM ontwikkeld. Het model voor de beschrijving van de
dynamica van de gedispergeerde fase houdt rekening met bel-bel botsingen
en is geparalleliseerd met een zogenaamde ”mirror domain” techniek, terwijl
de Poisson vergelijking voor de drukcorrectie van de continuë fase wordt
opgelost met een domein decompositie techniek die is geı̈mplementeerd in
de PETSc bibliotheek [Ref. http://www.mcs.anl.gov/petsc]. Het parallelle
algoritme is geverifieerd en blijkt voor beide fasen dezelfde resultaten
te geven als het seriële algoritme. Verder vertoont het algoritme een
goede schaalbaarheid tot 32 processoren. Met behulp van de voorgestelde
methode kan de homogene stroming in een lab-schaal bellenkolom
voor zeer hoge gas volume fracties (tot 37%) worden gesimuleerd in een
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aanvaardbare rekentijd.
Met behulp van een parallelle versie van het model is de invloed van de gas
inlaat configuratie op grootschalige structuren in een homogene quasi-2D
bellenkolom bij relatief hoge gas volumefracties bestudeerd. Zeven cases
met verschillende inlaat configuraties zijn experimenteel door Harteveld et
al. [In Proc. CHISA, 2004] bestudeerd. Elk van deze cases is gesimuleerd
met behulp van de parallelle versie van het DBM. De aanwezigheid van
coherente structuren bij zowel uniforme als niet-uniforme begassing
is bestudeerd. Verder is de invloed van de inlaat configuratie op de
stromingsdynamica bestudeerd, waarbij de statistische (tijdsgemiddelde en
fluctuerende) grootheden zijn vergeleken met PIV/PTV en LDA metingen
van Harteveld et al. De resultaten laten zien dat de modelresultaten in
grote mate overeenstemmen met de experimentele stromingsstructuren.
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Ringkasan

Meski telah banyak di gunakan pada berbagai proses (kimia) dan telah
banyak penelitian ditujukan untuk mengerti kelakuannya, informasi detil
tentang kolom gelembung masih sangat terbatas. Interaksi yang rumit
antara hidrodinamika, perpindahan masa dan reaksi kimia ditambah
dengan rentang waktu dan jarak yang lebar yang terdapat di dalam
reaktor membuat kolom gelembung sangat menantang ditinjau dari segi
pemodelan.
Di dalam disertasi ini pendekatan pemodelan bertingkat yang di
kombinasikan dengan strategi perhitungan paralel lanjut digunakan
untuk mempelajari fenomena yang terdapat di dalam kolom gelembung.
Dua model numerik dinamika aliran yakni ”front tracking” dan
”Eulerian-Lagrangian” digunakan untuk mempelajari fenomena yang
terkait. Interaksi yang relevan di antara hidrodinamika, perpindahan masa
dan reaksi kimia diperlakukan secara langsung pada setiap model.
Dalam rangka mempelajari fenomena hidrodinamika dan perpindahan
masa secara detil di tingkat individu gelembung, model front tracking
tiga dimensi yang dikombinasikan dengan teknik ”immersed boundary”
telah dikembangkan. Model ini secara eksplisit menyertakan proses
perpindahan masa antara gelembung dan fasa cairan. Dengan model
ini, perhitungan koefisien perpindahan masa (yang dibutuhkan pada
model yang lebih kasar seperti pada model ”Eulerian-Lagrangian” atau
”Eulerian-Eulerian”) secara apriori telah dimungkinkan. Beberapa simulasi
dilakukan untuk mendemonstrasikan kemampuan dari model yang
dikembangkan dalam memprediksi bentuk gelembung, medan aliran dan
juga perpindahan komponen kimia dari gelembung ke fasa cairan. Lebih
lanjut dalam simulasi menggunakan beberapa gelembung, kita telah
menemukan bahwa gelembung yang berjalan di riak yang dihasilkan oleh
gelembung lain akan mengalami peningkatan kecepatan sedangkan laju
perpindahan masa akan berkurang.
Model gelembung diskrit tiga dimensi (”discrete bubble model”, DBM)
dipakai untuk menyelidiki kelakuan rumit yang melingkupi hidrodinamika,
perpindahan masa dan reaksi kimia di dalam reaktor kolom gelembung
gas-cairan. Dalam model ini fasa cairan dideskripsikan sebagai kontinu
dan properti gelembung ditelusuri dalam kerangka Lagrangian dengan
mengikutsertakan interaksi antar gelembung dan gelembung-dinding
melalui model perjumpaan. Laju perpindahan masa dihitung untuk
setiap gelembung dengan menggunakan model pembaruan lapisan yang
mengikutsertakan karakteristik lokal sesaat dari fasa cair di sekitar
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gelembung. Distribusi ruang dari komponen kimia yang terdapat di dalam
fasa cair dihitung menggunakan persamaan kesetimbangan komponen
kimia dengan mengikutsertakan perpindahan masa dari gelembung ke
fasa cairan dan reaksi antar komponen. Model hidrodinamika yang di
kembangkan divalidasi dengan menggunakan data eksperimen dari Deen
et al. [Chem. Eng. Sci., 2001, 56, 6341] dan kita menemukan tingkat
keselarasan yang tinggi. Lebih jauh model yang dikembangkan juga
diaplikasikan untuk mempelajari proses pencampuran dan serapan fisik
dari gelembung CO2 di dalam air hingga fasa cair mencapai kondisi jenuh.
Untuk memvalidasi DBM dalam memprediksi hidrodinamika, perpindahan
masa dan reaksi kimia, instalasi eksperimen yang melingkupi reaktor
kolom gelembung kuasi dua dimensi dalam skala laboratorium telah
dibangun. Sistem reaksi dua tingkat dan dua arah yang terdapat di
dalam proses absorpsi kimia dari gas CO2 di dalam larutan NaOH telah
dipelajari secara eksperimen dan numerik menggunakan DBM yang telah
dikembangkan sebelumnya. Hasil perhitungan dibandingkan dengan
data eksperimen dari kecepatan gelembung yang diperoleh dengan
menggunakan teknik pengukuran kecepatan berbasis citra partikel
(”particle image velocimetry”, PIV). Lebih jauh, pengaruh dari perpindahan
masa dan reaksi kimia terhadap hidrodinamika, distribusi ukuran
gelembung dan gas hold-up juga dipelajari dan dibandingkan dengan data
eksperimen. Hasil penelitian menyimpulkan model yang dikembangkan
mampu untuk memperkirakan proses reaksi secara keseluruhan.
Perkiraan hidrodinamika tanpa mengikutsertakan perpindahan masa
terbukti akurat. Sedangkan hasil simulasi dengan mengikutsertakan
perpindahan masa menunjukkan total laju perpindahan masa yang lebih
rendah dibandingkan dengan data eksperimen. Ketidakakuratan ini
diperkirakan berasal dari ketidakakuratan koefisien perpindahan masa
yang digunakan. Meskipun demikian, kecenderungan dari pengaruh laju
perpindahan masa terhadap karakteristik hidrodinamika telah dapat
diperoleh dengan model yang dikembangkan pada penelitian ini.
Karena simulasi DBM dari kolom gelembung dengan mengikutsertakan
perpindahan masa dan reaksi kimia pada kondisi gas hold-up yang tinggi
membutuhkan kapasitas komputer yang besar, teknik perhitungan secara
paralel dibutuhkan. Algoritma paralel untuk DBM telah dikembangkan.
Model yang menerangkan dinamika dari fasa terdispersi yang menyertakan
prediksi dari tumbukan antar gelembung dipecahkan secara paralel
dengan menggunakan teknik ”mirror domain” sedangkan persamaan
tekanan Poisson untuk fasa kontinu dipecahkan dengan menggunakan
teknik pemisahan domain dengan menggunakan paket perangkat lunak
PETSc [Ref. http://www.mcs.anl.gov/petsc]. Algoritma paralel yang
dikembangkan telah diverifikasi dengan membandingkan hasil yang
diperoleh dengan algoritma serial. Lebih jauh algoritma paralel juga
menunjukkan skalabilitas yang baik hingga menggunakan 32 prosessor.
Dengan menggunakan algoritma yang dikembangkan, kolom gelembung



‖ xv

yang beroperasi pada regim homogen sampai dengan gas hold-up 37%
dapat disimulasikan dengan menggunakan waktu perhitungan yang relatif
singkat.
Algoritma paralel yang dikembangkan telah diaplikasikan untuk
menyelidiki pengaruh dari pola injeksi gelembung terhadap struktur aliran
pada sebuah kolom gelembung kuasi dua dimensi yang beroperasi pada
regim homogen dengan gas hold-up yang cukup tinggi. Tujuh kasus
dengan pola injeksi yang berbeda telah dipelajari secara eksperimen oleh
Harteveld et al. [Proc. CHISA, 2004]. Setiap kasus telah disimulasikan
dengan menggunakan versi paralel dari DBM. Keberadaan struktur
koheren untuk pola inlet seragam dan terbatas dipelajari. Selanjutnya,
pengaruh dari pola injeksi gas terhadap dinamika aliran dipelajari,
sedangkan kuantitas statistik (rata-rata dan fluktuasi) dibandingkan
dengan pengukuran PIV/PTV dan LDA dari Harteveld et al. Hasil yang di
peroleh menunjukkan model yang dikembangkan dapat memprediksi hasil
eksperimen secara luas.
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1
Introduction

”Nothing is too small to know, and nothing is too big to attempt.”
- William Van Horne

Abstract

In this chapter a brief introduction to bubble columns, with emphasis on mod-
elling is given. Despite their widespread use for various (chemical) processes
and a vast amount of research devoted to understand their behavior, detailed
knowledge of bubble column reactors is still lacking. The highly complex in-
teractions between hydrodynamics, mass transfer and chemical reaction as
well as the wide range of both time and spatial scales prevailing in the reactor
make bubble column reactors challenging from a modelling point of view. In
this thesis a multi-scale modelling approach in combination with an advanced
parallel computing technique is used to study the phenomena prevailing at
different scales. Two CFD models, namely an Eulerian-Lagrangian model and
a front tracking model are used to study the relevant phenomena at different
scales. The interactions between hydrodynamics, mass transfer and chemical
reactions are treated directly in each model taking into account the relevant
coupling.
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1.1 Bubble column reactors

Gas-liquid bubble column reactors refer to (cylindrical) vessels filled with a
liquid through which the gas is rising in the form of bubbles. The reactor
usually has one or more gas feeds, one of which is normally located at the
bottom of the column, and additional channels to distribute the liquid
phase (see illustration in Fig. 1.1). Bubble columns are encountered in
a wide range of applications such as the Fischer-Tropsch process for
hydrocarbon synthesis, hydrogenation of unsaturated oil, oxidation of
hydrocarbons, fermentation and (biological) wastewater treatment (see
Table 1.1 for more examples). Approximately 107 to 108 tons of products are
obtained through reactions in bubble columns per year [1].
Bubble column reactors offer distinct advantages over other gas-liquid
contactors. Two characteristic aspects of bubble columns are their simple
construction and the absence of complex (moving) mechanical parts. The
bubble column is a relatively cheap reactor and can be built in large
sizes. The aspect ratio (the ratio between length and diameter), may vary
enormously. However the most common aspect ratios being used are in
between 3 to 6 where the column height can easily exceed 20 m.
In bubble column reactors the flow is buoyancy driven, i.e. by differences
in the local density of the gas-liquid mixture or difference in the local gas
holdup. The flow structure can easily become highly dynamic or chaotic. In

gas product

gas feed

liquid product

liquid feed

Figure 1.1: Sketch of a bubble column reactor.
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Table 1.1: Some examples of reaction products obtained in bubble column reactors
[1].

purpose / product reactants
waste water purification waste water, air
wet oxidation of sludge sludge, air
protein from single cell organisms methanol, ammonia, air
margarine fatty acid, hydrogen
acetaldehyde ethylene, oxygen
cyclohexane benzene, hydrogen
cyclohexanol /-on cyclohexane, air
acetic acid acetaldehyde, oxygen or n-butane,

air
ethyl benzene benzene, ethylene
methanol hydrogen, carbon monoxide / car-

bon dioxide
propylene oxide propylene, per acetic acid
Fischer-Tropsch synthesis hydrogen, carbon monoxide

particular in ”empty” bubble columns where internals like draft tubes are
absent, an overall circulation pattern can prevail. The bubbles are primarily
responsible for the good mixing characteristics of the column and excellent
heat transfer characteristics marked by a nearly uniform temperature
distribution everywhere even under strong exothermic reaction conditions.
Three different flow regimes are encountered in bubble column operations
(see Fig. 1.2). These flow regimes affect the hydrodynamics, transport
and mixing properties in the column. When the gas flow rate is low, the
bubble size is relatively small and its distribution is narrow; spherical
gas bubbles are uniformly rising in the column. This is known as the
homogeneous regime. The rise velocity of the bubbles in this regime is
about 0.18 − 0.3 m/s [2]. Liquid up-flow is observed in the wake of the
bubbles and liquid down-flow in between the bubbles and near the walls.
When the superficial gas velocity is increased, bubble coalescence and
break-up occur more frequently resulting in bubbles of different sizes
and shapes. This regime, which is known as the heterogeneous regime,
has distinct characteristics where big bubbles rise in the center of the
column and smaller bubbles are moving along the walls of the column or
in the wakes of the larger bubbles. The liquid flow field is unsteady and
dominated by a variety of vortical turbulent structures. Industrial bubble
columns are commonly operated in this regime.
At even higher superficial gas velocity and in particular when the column
diameter is smaller than 0.15 m, the slug flow regime can be observed. In
this regime very large bubbles, the so-called slugs, span the entire cross
section of the bubble column. The slug behavior is normally undesirable
for bubble column operation due to its excessive gas by-pass effect.
This regime can however, be encountered in pipelines used to transport
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b. c.a.

Figure 1.2: The flow regimes observed in gas-liquid bubble column reactors; a. bubbly
flow or homogeneous regime; b. heterogeneous regime; c. slug flow regime.

mixtures of oil and gas from offshore oilrigs to coastal processing facilities.
In this thesis only the first two regimes will be considered.

1.2 Modelling of bubble column reactors

The performance of the bubble column reactor relies on the combined out-
come of multiphase fluid dynamics, interfacial mass transfer and chemi-
cal reactions. The interaction between these phenomena is illustrated in
Fig. 1.3. The chemical reaction rate depends on the local availability of the
species, which is determined by the interphase mass transfer process and
the mixing induced by the bubbles. The interphase mass transfer depends
on the mass transfer coefficient, the specific interfacial area and chemical
reaction rate. The mass transfer parameters are a function of the local pre-
vailing hydrodynamics, which in its turn is affected by the bubble behavior
and variation of physical properties due to in-homogeneous chemical species
distributions. Most of these phenomena are non-linear, and empirical mo-
dels cannot be extrapolated too far from the set of design parameters and
operating conditions under which they were extracted. As a result, bubble
column reaction engineering is still confronted with major challenges from a
modelling point of view.
Danckwerts [4, 5] was one of the first to investigate the mixing behavior in
bubble column reactors. A major step was taken by introducing the concept
of residence time distribution (RTD). The RTD arising from tracer experi-
ments can be used to identify situations that exist between the two extremes
of plug flow and complete mixing, and a variety of compartmental models,
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Chemical reaction

db
kl

E

a Fluid flowMass transfer

Figure 1.3: Inter-dependency diagram of fluid flow, mass transfer and chemical reac-
tion (from Darmana et al. [3]).

such as the tanks-in series and the cell model with backflow (or its contin-
uous equivalent, the axial dispersion model) have been used to include a
more or less detailed description of reaction and mass transfer [6–9]. Many
different empirical correlations for integral gas holdup, kla values, and mix-
ing parameters in the column are available as a function of superficial gas
velocity [10]. The validity of these correlations with respect to e.g. reactor
geometry, the viscosity of the phases and the reactive gas consumption is
often questionable [11].
With the continuous development of computer power, scientists have investi-
gated the hydrodynamics of the bubble column reactor using Computational
Fluid Dynamics (CFD), where detailed models that describe the phenomena
at various scales are derived from first principles and solved numerically.
Depending on the scale of interest, several modelling techniques are avail-
able, and summarized in Table 1.2. In modelling multiple bubbles rising
in a bubble column, two approaches are commonly used: the Euler-Euler
formulation, based on the concept of interpenetrating continua, i.e. the
two-fluid model, and the Euler-Lagrange approach. In the former approach
the Navier-Stokes equations are ensemble averaged using the approach of
Drew [12]. Expressions for all interphase interaction terms (i.e. closures)
are then required, and these mainly consist of models for the drag, lift and
virtual (added) mass forces. The number of bubbles present in a compu-
tational cell is represented by a volume fraction and the information of the
bubble size distribution is often obtained by incorporating population ba-
lance model which take into account break-up and coalescence of bubbles
as well as growth or shrinkage of bubbles as a consequence of mass trans-
fer. The Euler-Lagrange model on the other hand adopts a continuum de-
scription for the liquid phase and additionally tracks each individual bubble
using Newtonian equations of motion. This allows for a direct consideration
of additional effects related to bubble-bubble and bubble-liquid interaction.
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Table 1.2: Overview of the available modelling techniques based on the first principles

Model Equations Spatial
resolu-
tion

Applicability

Two fluid model
(Euler-Euler)

Ensemble averaged mass- and mo-
mentum conservation equations for
both phases

Low
∆ � db

Full size reactor

Discrete bubble
model (Euler-
Lagrange)

Equation of motion for each bubble;
volume averaged mass- and momen-
tum conservation equation for liquid
phase

Medium
∆ ≈ db

Lab-scale bubble
columns, bubble
plumes

Volume track-
ing / front
tracking model

Navier stokes equations for both
phases; advanced volume tracking
or front tracking scheme

High
∆ � db

Small systems;
O

`

102
´

bubbles

Mass transfer with and without chemical reaction, bubble coalescence and
re-dispersion can be incorporated directly [13–15]. Unlike the Euler-Euler
model, the Euler-Lagrange model does not require (computationally expen-
sive) population balance model to predict the bubble size distribution since
the bubble size are tracked individually. However, closure for breakage and
coalescence is still required to account for the phenomena.
In addition to the above-described methods, several models have been devel-
oped to investigate in detail hydrodynamics and the interface deformation of
a limited number of individual gas bubbles (i.e. up to O

(

102
)

bubbles). Hirt
and Nichols [16] followed by Youngs [17] developed the volume-of-fluid (VOF)
method which is able to account for substantial changes in the topology of
the gas-liquid interface induced by the relative liquid motion. This particu-
lar capability allows a detailed study of bubble formation, coalescence and
breakup. Sankaranarayan et al. [18] implemented the VOF technique in the
lattice Boltzman method (LBM) to simulate the flow of a single rising bub-
ble. They showed that the great potential of the LBM can also be applied
to resolve the details of multiphase flows. Delnoij et al. [19] and Van Sint
Annaland et al. [20] respectively used a 2D and 3D VOF showed that this
technique is able to predict the interactive behavior and subsequent coales-
cence of two trailing bubbles, rising in a quiescent liquid remarkably well.
Unverdi and Tryggvason [21] developed the front tracking method, which de-
scribes the interface by additional computational elements, usually a con-
nected set of points or a separate unstructured grid that forms a moving
boundary. The method describes and tracks the time-dependent behavior
of the interface itself. Front tracking methods are extremely accurate but
also very complex. This complexity arises from the interaction between the
moving boundary and the Eulerian mesh employed to solve the flow field.
Major difficulties arise when multiple interfaces interact with each other as
in bubble coalescence or breakup. These cases require additional algorithms
governing the merger or breakup of interfaces.
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One of the major benefits of a very detailed model mentioned above is that
parameters (closure) are not needed apart from the physical properties gov-
erning the system. Instead, these methods can provide the closures needed
by a less detailed model such as the Euler-Euler or Euler-Lagrange models.
Some work in this direction has been done for instance by Dijkhuizen et
al. [22] who obtained drag and virtual mass closures for a single bubble
rising in quiescent liquid from both volume-of-fluid and front tracking sim-
ulations and Deen et al. [23] who used front tracking model to simulate the
hydrodynamics of bubble motion on a small scale and subsequently derived
closure information from the model to be used on a larger scale model (i.e.
the Euler-Lagrange model).
Reaction and mass transfer are usually not included in detailed hydrody-
namics models of bubble columns. This is mainly because chemical reac-
tions normally employ a large set of chemical species which requires ex-
tra computer memory on top of the big memory needed to solve the hydro-
dynamics model. Furthermore, the coupling between fluid dynamics with
complex and often non-linear chemical reaction systems results in a pro-
hibitively steep increase of computational time, whereas the full reaction
evolution process can take minutes or even hours, which is very long from
a computational point of view.
Recently some authors tried to solve the problem by disassembling the inter-
action between hydrodynamics, mass transfer, chemical reactions and solve
each aspect in a separate model. In those models, CFD is employed only
for hydrodynamic simulation, while the chemical phenomena are resolved
in a custom-build compartmental model (similar with the one used in the
early modelling of bubble columns). Bauer and Eigenberger [1,11,24] used
a multi-scale modelling approach where parameters obtained from small
scale simulation, ”frozen” detailed hydrodynamics resulting from CFD and
population balances are fed to a simplified reactor model where mass trans-
fer and chemical reaction is treated. Similarly, Rigopolous and Jones [25]
mapped a CFD solution into a compartmental model, which was applied to
study CO2 absorption into an alkali solution.
Since these methods essentially form compromising techniques to cope with
the necessity to get insight information about the mass transfer and chemi-
cal reaction process and the prohibitively expensive direct CFD calculation,
it does not necessarily resolve the interaction between hydrodynamics, mass
transfer and chemical reactions as shown in Fig. 1.3. For example, the
method does not have back coupling from the mass transfer and chemical
reaction phenomena to the hydrodynamics. This means a.o., a fixed mean
bubble size is used to calculate the specific surface area for mass transfer
calculation. By assuming an incorrect bubble size, the CFD prediction of
other parameters needed in hybrid methods such as the integral gas hold-
up and the slip velocity would not be accurate either, which eventually will
deteriorate the prediction accuracy of the mass transfer and chemical re-
action process. Therefore, it is realized that direct coupling between CFD,
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mass transfer and chemical reaction is indispensable despite the excessive
calculation power needed to solve it and more research effort has to be given
in this direction.

1.3 Multiscale modelling approach

Apart from its complex interaction, bubble column reactors cover a wide
range of spatial scales which span about 7 orders of magnitude. Resolving
all scales is not possible in the present or even in the foreseeable future due
to excessive requirements in computer power. As an illustration, consider a
simple air-water system in a lab-scale bubble column reactor. The largest
possible length-scale λR is introduced as the characteristic of the mean flow,
which depends on the scale of the reactor geometry R. In order to predict the
size of the computational cells required to properly resolve all the relevant
hydrodynamics scale, one for example, can use the Kolmogorov length scale
λK (λK � λR), which is given by:

λk =

(

ν3

ε

)1/4

(1.1)

where ν is the kinematic viscosity of the respective phase and ε denotes
the energy dissipation rate per unit mass, which can be estimated as [26]:
ε = v · g, where v is the bubble rise velocity and g the gravity constant. For
a 4 mm air bubble rising in water with a rise velocity of 30 cm/s, this leads to
a length scale ∆ ≈ 0.04 mm inside the liquid phase and 0.2 mm inside the gas
phase.
It has meanwhile been well accepted that the two-phase hydrodynamics of
bubble column reactors can only be simulated reasonably well, if a fully
dynamic (transient) 3D model is used [14,15,27]. Neither steady state nor
dynamic 2D simulations with circular symmetry are able to represent the
essential features of the buoyancy driven bubbly flow to a reasonable extent.
Hence, for a lab-scale bubble column with size of 0.2 × 0.03 × 1 m, a 3D
hydrodynamics simulation would require about 1011 computational cells.
The amount of computational cells needed can even be increased if transfer
and transport of a chemical species is taken into account. In such cases the
smallest relevant length scale is determined by the Bachelor length scale λB,
which is given by:

λB =
λK√
Sc

(1.2)

where Sc denotes the Schmidt number, i.e.

Sc = ν/D (1.3)

In the case of gas-water systems with absorption of the gas phase into the
liquid, typical values of Sc are about 103 which makes the computational
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cells required to resolve our lab-scale bubble column rise into a staggering
3.3 × 1015 cells, a number which cannot be handled even by the next
foreseeable computational power.
To cope with this problem, a multi-scale modelling strategy is adopted to
properly simulate different aspects of the reactor within a reasonable
amount of computational time without loosing too much detail. Within
this strategy, the wide range of spatial scales prevailing in the bubble
column is split into two or more sub ranges in which for each sub-range
an appropriate CFD model tailored to study the phenomena at a certain
scale is used. For a small lab scale bubble column, one for instance,
can adopt a front tracking model to resolve all the relevant phenomena
(hydrodynamics, mass transfer and chemical reaction) up to the bubble
length scale λd (O (db)) while an Euler-Lagrange model is used to resolve all
scales from the bubble scale λd up to the integral scale λR (see Fig. 1.4).
The key of this computational strategy is the exchange of information
between the different scales of modelling that constitute our multiscale
models. For example, the detailed front tracking model requires no
empirical closure laws at all, but it does provide us with extremely detailed
information on the flow as well as the species concentration field in and
around a deforming gas bubble. The Euler-Lagrange model on the other
hand is able to simulate multiple bubbles rising and resolving the (geometry
dependent) mean flow field, however it does require a set of closures to
describe the bubble dynamics. By performing front tracking simulations
with the condition dictated by the bulk flow configuration resulting from an
Euler-Lagrange simulation, we can derive sets of empirical closures as a
function of various mean flow conditions and bulk concentrations, which
later on are fed back to the Euler-Lagrange model.
The small scale that is being ”trimmed” away from the Euler-Lagrange
modelling (i.e. the subgrid phenomena) is recovered via an additional
turbulence model such as the k − ε model or a large eddy simulation (LES)
model. This turbulence modelling is very important as early laminar
numerical simulations by Delnoij et al. [14] suggested that without a
proper turbulence modeling the predicted oscillation period will be too
short compared to experimental findings. Several authors like Mudde
and Simonin [28], Sokolichin and Eigenberger [29] and Pfleger et al. [30]
showed that, in order to get a grid independent quasi periodic solution, a
3-dimensional simulation, employing a k − ε model should be used. In this
case, the effective viscosity gets a realistic value.
Recently the use of large eddy simulations as an alternative to the standard
k − ε model is suggested by Kuipers and Van Swaaij [31]; Jakobsen et
al. [32] and Van den Akker [33]. An article by Deen et al. [27] shows that
contrary to the simulations using the standard k − ε model, the LES
simulations captured the strong transient movement of a bubble plume,
which were observed in the experiment. This gives indication of the
superiority of the LES compared to the k − ε in predicting the dynamics of
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model
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closure

bulk info
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Figure 1.4: Concept of the multiscale modelling applied to a lab-scale bubble column.
A three dimensional Euler-Lagrange model supplemented with a turbulence model
is used to predict the (geometry dependent) bulk properties such as the liquid ve-
locity u∞, void fraction ε, pressure field p and concentration c∞ with the closures
(CD, CL, CV M , CW , kl, E) that are provided by a 3D front tracking model simulation.
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multiphase flows. It should be noted that LES is computationally more
expensive than the more simple turbulence model such as the k − ε model,
because it requires a much higher spatial resolution.

1.4 The role of parallel computing

By employing a multiscale modelling approach the astronomical size of the
required computational grid can be reduced significantly. Nevertheless the
computational requirements are sometimes still bigger than a normal per-
sonal computer (PC) can provide. Using a grid size of ∆ ≈ 0.5db for example,
a total of 7.5 × 105 computational cells is required for the Euler-Lagrange
simulation of our lab-scale bubble column, while the corresponding front
tracking model with a typical computational size of 4db × 4db × 8db would re-
quire ≈ 108 computational grid to resolve the Kolmogorov length scale. These
computational requirements might fit into a state of the art PC, however it
would take years to finish one calculation.
Recently parallelization strategies have received considerable attention in
the CFD community. By solving a problem in parallel, not only the time
required to solve the problem can be reduced significantly, also the problem
size that can be handled is increased, since the memory requirements can
be distributed.
Parallel algorithms can be constructed by redesigning serial algorithms to
make effective use of parallel hardware. However, not all algorithms can be
parallelized. This is summed up in a famous saying [34]:

”One woman can have a baby in nine months, but nine women
can’t have a baby in one month.”

By incorporating a standard parallel communication protocol such as mes-
sage passing interface (MPI) and carefully writing the code to make it less
platform dependent, the parallel code can be run on various platforms from
a true massive parallel system such as the National Science Foundations
Aster system, down to an in-house PC-cluster consisting of various normal
commodity PCs, which are connected through a fast network to perform a
single (parallel) task (see Fig. 1.5.). The latter has become increasingly pop-
ular in the CFD community as a cheap solution to enter the world of parallel
computing.
The performance of a parallel code is measured by its speed-up and effi-
ciency. In practice, linear speedup (i.e., speedup proportional to the number
of processors) is very difficult to achieve. This is because many algorithms
are essentially sequential in nature, which is reflected by Amdahl’s law: ”it
is the algorithm that decides the speedup not the number of processors”.
To develop parallel algorithms that are highly efficient and can be used to
solve bigger problems that are otherwise impossible to carry out on a single
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(a) National Science Foundation’s Aster system

(b) Part of FAP Oscar cluster (left) and FAP Citra parallel cluster

Figure 1.5: Computational platform used in this project. (a) Aster supercomputer, a
massively parallel system consisting of SGI Altix 3700 with 416 CPUs (Intel Itanium
2, 1,3 GHz, 3 Mbyte cache each), 832 Gbyte of memory and 2.8 Tbyte of scratch disk
space with a total peak performance of 2.2 Teraflop/sec (b) In-house PC cluster built
by the author during the project. Oscar cluster consisting of 60 commodity PCs, used
mainly for serial calculation. Citra parallel cluster, consisting of 8-processor AMD
Opteron 1.8GHz dualcore with 2GB of RAM for each core and infiniband interconnect
dedicated for parallel code development and calculations.
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computer thus becomes the central interest in research of parallel comput-
ing.

1.5 Experimental validation

Experimental validation of the CFD model remains a crucial step in order
to gain widespread acceptance of the model as an aided design tool in the
engineering community as well as for the development of more sophisticated
and refined CFD models.
For the purpose of validation of the flow field calculations, non-intrusive
(laser based) experimental techniques such as particle image velocimetry
(PIV) and laser Doppler anemometry (LDA) are preferred. PIV is the mea-
surement technique developed in the field of experimental fluid dynamics to
study fluid motion using tracer particles. It can be used to measure whole
field information of the mean and fluctuating velocities. The LDA technique
on the other hand can only provide velocity information in a single point,
however the data rate is generally higher, which make it useful to measure
intense turbulent flow.
For validation of the bubble size distribution, imaging techniques can be
used. With such techniques, bubbles moving inside the reactor are recorded
using a digital camera. The images are processed using bubble identifier
software to measure the size of the bubbles. A disadvantage of this tech-
nique is that it can only be applied in pseudo 2D systems at relatively low
gas hold-ups. Despite this disadvantage imaging techniques are applied in
many studies.
To obtain high quality experimental data, especially using advanced exper-
imental techniques as mentioned above, is very difficult and requires dedi-
cated research activities, hence in this thesis the experimental data used for
model validation is mostly obtained from literature and supplemented with
data resulting from our dedicated experiments.

1.6 Objective and contributions

The objective of this thesis is to further develop and improve computational
models in the research of fluid dynamics in gas-liquid bubble column reac-
tors in the framework of multiscale modelling. The emphasis will be given to
incorporate mass transfer and chemical reactions on top of the fluid dynam-
ics models which have been previously developed. The model is then used to
gain insight in the phenomena prevailing in a bubble column reactor under
reactive conditions especially to achieve a better understanding on how to
model the complex interaction between hydrodynamics, mass transfer and
chemical reaction.
The contributions to these topics are arranged in chapters as follows:
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❧ Chapter 2 discusses the modelling of mass transfer using a front track-
ing model. The model is used to predict the mass transfer coefficient for
different flow regimes selected from the Grace diagram. Furthermore,
the cases of single and multiple bubbles rising in an initially quiescent
flow are considered.

❧ Chapter 3 will discuss detailed modelling of hydrodynamics, mass
transfer and chemical reaction based on a three dimensional
Euler-Lagrange model. The model is used to study the hydrodynamics,
mixing, mass transfer and chemical reaction in a square 3D bubble
column.

❧ Chapter 4 discusses the application of the model developed in chapter 3
to simulate chemisorption of CO2 gas into NaOH solutions in a pseudo
2D lab-scale bubble column. Full evolution of the reactions is consid-
ered. Both quantitative and qualitative comparison with experimental
observations is given.

❧ Chapter 5 describes the parallelization effort applied into the three di-
mensional Euler-Lagrange model with four-way coupling. A new para-
llel algorithm called the mirror domain technique is developed to solve
the model in parallel. Several test cases are presented ranging from a
homogeneous bubbly flow simulation to the investigation of the influ-
ence of bubble coalescence on the hydrodynamics.

❧ Chapter 6 is meant to further validate the Euler-Lagrange hydrody-
namics model with experimental data. A pseudo-2D bubble column
with relatively high gas hold-up is modeled with emphasis on the effect
of the inlet onto the hydrodynamics behavior.

Notation

a reactor specific area, m2 m−3

c∞ bulk species concentration, kmol m−3

CD drag force coefficient, dimensionless
CL lift force coefficient, dimensionless
CW wall force coefficient, dimensionless
CV M added mass force coefficient, dimensionless
db bubble diameter , m
D species diffusion coefficient, m2 s−1

E enhancement factor, dimensionless
g gravitational acceleration, m s−1

kl liquid side mass transfer coefficient, m s−1

p pressure, N m−2

Sc Schmidt number, dimensionless
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u liquid velocity vector, m s−1

v bubble velocity vector, m s−1

Greek letters

∆ grid size, m
ε energy dissipation rate per unit mass, m
λB Bachelor length scale, m
λK Kolmogorov length scale, m
λR reactor integral length scale, m
ν kinematic viscosity, m2 s−1
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2
Detailed 3D Modelling of Mass Transfer

Processes in Two Phase Flows With Dynamics
Interfaces§

”We think in generalities, but we live in details.” - Alfred North
Whitehead

Abstract

In this chapter a model is presented which allows us to a priori compute mass
transfer coefficients for bubbles (droplets) rising in quiescent Newtonian fluids.
Our model is based on the front tracking technique and explicitly accounts
for the bubble-liquid mass transfer process. The dissolved species concen-
tration in the liquid phase is computed from a species conservation equation
while the value of the concentration at the interface is imposed via an im-
mersed boundary technique. In the present study, simulations are carried out
to demonstrate the capabilities of the model to predict bubble shape, flow field
as well as transport of a species from bubble to the liquid phase. Finally, we
also show that bubbles rising in the wake of other bubbles will experience an
increase of rise velocity, while the mass transfer rate is decreased.

§Based on: Darmana et al. [1,2]
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2.1 Introduction

Gas-liquid chemical reactors have been studied extensively, both
experimentally and computationally. However, because of the complex
hydrodynamics, mass transfer and chemical transformations, as well as
their mutual interactions, there is still a lack of fundamental understanding
of these industrially important reactors.
Due to recent advances in computer power, it has become possible to
simulate three dimensional gas-liquid chemical reactors adopting either the
Euler-Euler or Euler-Lagrange approach. With these models, large scale
processes involving hydrodynamics, mass transfer and chemical reaction
can be studied in detail. However, as both models require a set of closures
to specifically describe a particular system, the reliability of the results
strongly depends on the accuracy of the provided closures.
Traditionally the closures are obtained via experimental routes in
well-controlled systems. Only recently scientists have embarked to
obtain the required closures from detailed numerical simulations. As an
example, using front tracking and volume of fluid models, Dijkhuizen et
al. [3] obtained hydrodynamic (drag, lift and virtual mass) closures and
found good agreement with experimental data reported in the literature.
Furthermore, based on two-dimensional front tracking modelling with
additional mass balance equations, Koynov et al. [4] showed that the mass
transfer coefficient can also be extracted from such detailed numerical
simulations.
From experimental data published by Grace [5] it is known that the
physical properties of a gas-liquid system will determine the bubble shape
as well as its rise velocity. These parameters, in turn affect the flow field in
the vicinity of the bubbles and consequently the gas-liquid mass-transfer
and the transport (mixing) in the liquid phase. It has become evident that,
in order to accurately predict the mass transfer coefficient, a model should
be able to render correctly the shape of the bubble as well as its rise
velocity for a given set of physical properties.
In the past decade several techniques have been developed to simulate
multifluid flow problems. The most popular techniques have been
summarized by Van Sint Annaland et al. [6] and are given in Table 2.1
along with their main advantages and disadvantages. Each of the presented
methods will be briefly described here.
Level set methods [7–13] are designed to minimize the numerical diffusion
hampering shock-capturing methods and typically define the interface as
the zero level set of a distance function from the interface. The advection
of this distance function evolves through the solution of the following
equation:

DF

Dt
=
∂F

∂t
+ (u · ∇F ) = 0 (2.1)
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Table 2.1: Overview of techniques for multifluid flows with sharp interfaces (from Van
Sint Annaland et al. [6])

Method Advantages Disadvantages
Level set Conceptually simple Limited accuracy

Easy to implement Loss of mass (volume)
Shock-capturing Straightforward implementation Numerical diffusion

Abundance of advection schemes
are available

Limited to small discontinu-
ities

Marker particle Extremely accurate Computationally expensive
Robust Redistribution of marker

particles required
Accounts for substantial topology
change in interface

SLIC VOF Conceptually simple Numerical diffusion
Straightforward extension to three
dimensions

Limited accuracy

Merging and breakage of in-
terface occurs automatically

PLIC VOF Relatively simple Difficult to implement in
three dimensions

Accurate Merging and breakage of in-
terface occurs automatically

Accounts for substantial topology
change in interface

Lattice Boltzmann Accurate Difficult to implement
Accounts for substantial topology
changes in interface

Merging and breakage of in-
terface occurs automatically

Front-tracking Extremely accurate Mapping of interface mesh
onto Eulerian mesh

Robust Dynamic remeshing required
Accounts for substantial topology
changes in interface

Merging and breakage of
interfaces requires subgrid
model
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expressing that the interface property is advected with the local fluid
velocity. Level set methods are conceptually simple and relatively easy to
implement and yield accurate results when the interface is advected parallel
to one of the coordinate axes. However, in flow fields with appreciable
vorticity or in cases where the interface is significantly deformed, level set
methods suffer from loss of mass (volume) and thus loss of accuracy.
Shock-capturing methods [14] employ high-order shock-capturing schemes
to treat the convective terms in the governing equations. The advantage of
this method is that explicit reconstruction of the interface is circumvented,
which offers advantages for unstructured grids. Although state of the art
shock-capturing methods are quite sophisticated, they work less well
for the sharp discontinuities usually encountered in multifluid flows.
Moreover, they require relatively fine grids to obtain accurate solutions.
Rider and Kothe used a high-order Godunov method and conducted several
numerical tests and concluded that ”in all cases the use of shock-capturing
methods was inadequate”.
Marker particle methods [15,16] use marker particles that are assigned to a
particular fluid and are used to track the motion (and thus the interface) of
this fluid. From the instantaneous positions of the marker particles the
relevant Eulerian fluid properties, required to solve the Navier-Stokes
equations, are retrieved. Marker particle methods are extremely accurate
and robust and can be used successfully to predict the topology of an
interface subjected to considerable shear and vorticity in the fluids sharing
the interface. However, this method is computationally very expensive,
especially in three dimensions. Moreover, difficulties arise when the
interface stretches considerably, which necessitates the addition of fresh
marker particles during the flow simulation. Similar difficulties arise when
the interface shrinks. Also merging and breakup of interfaces constitute a
problem; again a proper subgrid model needs to be invoked.
Volume of fluid (VOF) methods [17–23] use a color function F (x, y, z, t) that
indicates the fractional amount of fluid present at a certain position (x, y, z)
at time t. The evolution equation for F is again Eq. 2.1, which is usually
solved using special advection schemes (such as geometrical advection, a
pseudo-Lagrangian technique), to minimize numerical diffusion. In addition
to the value of the color function the interface orientation needs to be
determined, which follows from the gradient of the color function. Roughly
two important classes of VOF methods can be distinguished with respect to
the representation of the interface: simple line interface calculation (SLIC)
and piecewise linear interface calculation (PLIC). Earlier work is generally
typified by the SLIC algorithm attributed to Noh and Woodward [24] and the
donoracceptor algorithm published by Hirt and Nichols [18]. Modern VOF
techniques include the PLIC method ascribed to Youngs [19]. The accuracy
and capabilities of the modern PLIC VOF algorithms greatly exceeds that of
the older VOF algorithms such as the Hirt and Nichols [20] VOF method. A
drawback of VOF methods is the so-called artificial (or numerical) merging
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of interfaces (that is, coalescence of gas bubbles), which occurs when their
mutual distance is less than the size of a computational cell. On the other
hand, when coalescence is known to prevail, the VOF method, contrary
to the Front Tracking method does not require specific algorithms for the
merging (or breakage) of the interface. Recently, van Sint Annaland et
al. [25] successfully applied their three-dimensional (3D) VOF model, based
on Youngs’s method, to simulate the coaxial and oblique coalescence of two
rising gas bubbles.
Lattice Boltzmann methods (LBM) can be viewed as a special, particle-based
discretization method to solve the Boltzmann equation. This method is
particularly attractive in case multiple moving objects (particles, bubbles,
or droplets) have to be treated and avoids, contrary to the classical
finite-difference and finite-element methods, the dynamic remeshing that
becomes prohibitive for a large number of moving objects. Ladd has
used the LBM successfully to compute the effective gas-particle drag in
particulate suspensions whereas Sundaresan and coworkers [26, 27]
recently extended this technique to deformable interfaces and successfully
applied this technique to study the dynamics of isolated gas bubbles rising
in quiescent liquids. However, in this method problems may arise similar
to those in VOF methods as a result of the artificial coalescence of the
dispersed elements (gas bubbles).
Front-tracking methods [28–31] make use of markers (such as triangles),
connected to a set of points, to track the interface, whereas a fixed or
Eulerian grid is used to solve the Navier-Stokes equations. These methods
are extremely accurate but also rather complex to implement because
dynamic remeshing of the Lagrangian interface mesh is required and
mapping of the Lagrangian data onto the Eulerian mesh has to be carried
out. Difficulties arise when multiple interfaces interact with each other
as in coalescence and breakup, both of which require a proper subgrid
model. Contrary to LBM and VOF, the automatic merging of interfaces
does not occur in front-tracking techniques because a separate mesh is
used to track the interface. This property is advantageous in case swarm
effects in dispersed flows need to be studied. Because of the Lagrangian
representation of the interface this technique offers considerable flexibility
to assign different properties (such as the surface tension coefficient) to
separate dispersed elements.
Study of mass or heat transfer taking into account a deforming interface
has been carried out by several authors. Wohak and Beer [32], used
VOF to study heat transfer from a spherical drop in a uniform stream.
Davidson and Rudman [33] developed a new method to treat diffusion at
the interface based on the VOF model and used it to study heat transfer
from a rising bubble with toroidal shape and mass transfer from a rising
drop with intra-droplet mass transfer limitation. Bothe et al. [34] used
a VOF based method to study mass transfer and transport of oxygen
for single bubbles as well as bubble chains rising in aqueous solutions.
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Recently, Koynov et al. [4] used a 2D front tracking based method to study
mass transfer and chemical reactions for single bubbles and clusters of
bubbles. It is found that the VOF method has been mostly used to model
mass transfer processes. However, as the interface resolved by the VOF
model is less detailed compared to the front tracking model and the fact
that front tracking does not suffer from automatic merging in the case of
bubble-bubble encounters, we believe that front tracking is more promising
to serve as a base model to study mass transfer, especially in the case of
bubble swarms.
A three dimensional Front Tracking code (FT3D) has been developed in our
group and validated by Van Sint Annaland et al. [6] by conducting extensive
numerical tests. They showed that the model can predict shapes of bubbles
as well as their rise velocities in accordance with the Grace diagram over a
wide range of physical properties. In the present study, FT3D is extended
by adding species transport equations to allow simulation of systems with
mass transfer and chemical reaction. Three simulations are carried out
to demonstrate the capabilities of the model to predict the mass transfer
coefficient of a single bubble rising in a quiescent liquid. Furthermore, a
simulation with a cluster of bubbles is also carried out to investigate
the influence of neighboring bubbles on the mass transfer process. The
ultimate goal of this study is the prediction of the bubble-liquid mass
transfer coefficient for bubbles rising in isolation or dense swarms required
to simulate gas-liquid chemical reactors using large scale models such as
the Euler-Euler model or the Euler-Lagrange model.

2.2 Governing equations

The front tracking model makes use of markers (such as triangles), con-
nected to a set of points, to track the interface, whereas a fixed or Eulerian
grid is used to solve the Navier-Stokes equations (see Fig. 2.1). Further-
more, the interface markers are translated using the interpolated velocity
field while the surface tension is calculated for every marker, which is then
coupled to the Navier-Stokes equations.
For incompressible media the Navier-Stokes equations can be written as
(one field formulation):

O · u = 0 (2.2)
∂ρu

∂t
+ O · ρuu = −Op+ ρg + O · µ

[

(Ou) + (Ou)
T
]

+ Fσ (2.3)

where Fσ is the local volumetric surface force accounting for the presence of
the dispersed phase.
The local averaged density ρ and viscosity µ are evaluated from the local
distribution of the phase indicator or colour function F which is governed
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Fixed Grid Front

Fluid 1

Fluid 2

Figure 2.1: Front tracking concept. The governing equations are solved on a fixed grid
while the phase boundary is represented by a moving ”front”, consisting of connected
marker points.

by a Poisson equation given as:

O
2F = O · G (2.4)

where the vector quantity G contains the information of the spatial distri-
bution of the interface.
For the density ρ linear weighing of the density of the continuous (`) and
disperse phased (g) is used:

ρ = Fρ` + (1 − F )ρg (2.5)

The local average viscosity is calculated via harmonic averaging of the kine-
matic viscosities of the involved phases following the approach proposed by
Prosperetti [35]:

ρ

µ
= F

ρ`

µ`
+ (1 − F )

ρg

µg
(2.6)

The mass balance equations for a chemical species present in the liquid can
be written as:

∂

∂t
(c) + O · (uc) − DO

2 (c) = Fs (2.7)

where Fs is a species volumetric forcing term, which will ensure that the
value of the species concentration at the interface is equal to the value pre-
scribed by Henry’s law. In this study a single mass balance is used to de-
scribe the species quantity inside and outside the bubble. The depletion of
the gas inside the bubble is neglected given the fact that for the purpose
of obtaining mass transfer closure, the residence time of simulation is gen-
erally short compared to the mass-transfer time scale. Thus, by assuming
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that the bubble only contains a single species and by neglecting pressure
gradients inside the bubble, the concentration of the dissolved gas within
the area enclosed by the interface must stay constant which is achieved via
the forcing term at the interface.

2.3 Numerical solution method

2.3.1 Flow field

In order to handle systems with very large density ratios such as air-water or
vapor-water system (see Dijkhuizen et al. [3]), the Navier-Stokes equations
are rewritten in the non-conservative form using the continuity equation:

ρ

[

∂u

∂t
+ (O · uu)

]

= −Op+ ρg + O · µ
[

(Ou) + (Ou)
T
]

+ Fσ (2.8)

where the density on the left hand side is evaluated at the old time level.
Eq. 2.8 is solved with a standard finite difference technique on a staggered
rectangular three-dimensional grid using a two-step projection-correction
method with an implicit treatment of the pressure gradient and explicit
treatment of the convection and diffusion terms. A second order flux
delimited Barton-scheme is used for the discretization of the convective
terms and standard second order central finite difference for the diffusion
terms. The resulting pressure Poisson equation (PPE) is solved using
the conjugate gradient method with the block Jacobi method selected as
preconditioner implemented in the PETSc package [36–38].

2.3.2 Interface tracking and phase indicator

The corner points of the surface elements (markers) are moved with an in-
terpolated velocity field using a first order Euler time integration:

rn+1 = rn + un+1
m ∆t (2.9)

where rn and rn+1 represent the position vector of the marker points at
respectively the old (n) and new (n + 1) time level, whereas un+1

m represents
the interpolated velocity field at the new time level.
The spatial distribution of the phase indicator F is solved by first calculating
the spatial interface vectors G using the method proposed by Unverdi and
Tryggvason [28]:

G =
∑

m

D (x − xm)nm∆sm (2.10)

where D (x − xm) represent a numerical approximation of the Dirac-function
normalized to the cell volume. In the present model, volume weighing is used
and proofed to be sufficiently stable [39].
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Ftensile,m,1 = σ (tm,1 × nm,1)

nm,3

nm,2nm

nm,1

tm,2

tm,1

m
2

3

1

tm,3

Figure 2.2: Surface tension force exerted by three neighboring surface elements on
the central surface element.

Using G given by Eq. 2.10, the Poisson-equation for the colour function
F (Eq. 2.4) is discretized using a standard finite difference method. The
resulting set of linear equations is solved using the incomplete Cholesky
conjugate gradient (ICCG) algorithm.

2.3.3 Surface force

The net surface force acting on a single surface element m is calculated as:

Fm,s =

∮

σ (t × n) ds (2.11)

where t is the unit tangent vector (or edge) of element m, s the tangent
coordinate and n is the unit normal vector.
In the discrete form (see Fig. 2.2), Eq. 2.11 is written as:

Fm,s =
∑

k

σ (tk × nk) (2.12)

where tk is the length of the edge shared by element m and neighboring el-
ement k and nk is its unit normal vector. The tangent vectors are directly
calculated form the known positions of the three corner points of the el-
ement. The volumetric surface force in the Eulerian grid is obtained by
mapping individual net surface force from all elements:

Fσ (x) =

∑

m

∑

k ρm,kD (x − xm,k)σ (tm,k × nm,k)
∑

m

∑

k ρm,kD (x − xm,k)
(2.13)



28 ‖ � � ����� � � � � � � ���

where, additional density weighing is used to avoid distribution of the sur-
face force to cells that have a very low liquid volume fraction.

2.3.4 Mass transfer

The species balance given in Eq. 2.7 is solved by a two-step prediction cor-
rection method. The value of the concentration at the interface is imposed
using the immersed boundary technique described by Uhlmann [40]. In this
technique a volumetric forcing term Fs is determined in such a way that the
resulting solution of Eq. 2.7 gives the desired value of the concentration at
the interface in an interpolated manner.
In the prediction step, the effect of the species forcing term is ignored to
obtain an explicit expression for the intermediate solution c∗:

c∗ − cn

∆t
= −∇ ·

(

un+1cn
)

+ D∇2 (cn) (2.14)

Here, n denotes the old time level and n+ 1 the new time level.
The species volumetric forcing term Fs is determined by first calculating
the total forcing term for computational cell i, f ∗

i , by making use of the
intermediate solution for the concentration:

f∗i =
Hc0 − c∗i

∆t
(2.15)

where H and c0 respectively represent the Henry constant and species con-
centration inside the bubble.
Since we only want to force the value of the concentration at the interface,
the volumetric forcing term is calculated by taking into account the influ-
ence from each marker m as:

F∗
s,i = ωi · f∗i (2.16)

with ωi is a distribution function for a computational cell i calculated as:

ωi =
∑

m

D (xi − xm)
∆Vm

Vcell
(2.17)

where ∆Vm is the volume associated with marker m defined as:

∆Vm = Am(Vcell)
1/3 (2.18)

where Am and Vcell respectively are the area of marker m and the volume
of the associated computational cell, Vcell = ∆x · ∆y · ∆z. Here we use a
Peskin like function for the numerical approximation of the Dirac function
D (xi − xm) which we believe can provide a smoother function over the stan-
dard volume weighing as described in more detail in Chapter 5.
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The second step in the solution of Eq. 2.7 is a correction step, where the
species forcing term is added:

cn+1 − cn

∆t
= −∇ ·

(

un+1cn+1
)

+ D∇2
(

cn+1
)

+ F∗
s (2.19)

For both Eqs 2.14 and 2.19, a standard central scheme is applied to the
diffusive term, while a second order Barton scheme [41] is used to evaluate
the convective term. Furthermore, a first order Euler scheme is used for the
time integration.
Since ω only depends on the interface position, one can first calculate ω
for all markers m and proceed by solving Eq. 2.14 only for the computa-
tional cells where ωi 6= 0. Meanwhile, in the solution of Eq. 2.19, for each
chemical species involved in the system (including the background liquid) a
species balance equation is used. The resulting discretized equations for all
species are solved simultaneously using an algorithm similar to that used
by Hjertager [42] in solving the mass conservation equations in a multi-fluid
model. This algorithm has also been used by Darmana et al. [43] for solving
chemical species balances in their discrete bubble model (see chapter 3).

2.3.5 Velocity interpolation for the species balance equation

To improve accuracy, the species balance is solved on a grid that is finer
than the grid employed for the hydrodynamics. The fluid velocities defined
on the (coarse) hydrodynamics grid are interpolated on the fine grid using
a simple (divergence free) piecewise linear interpolation technique following
the work of Rudman [20], which is illustrated in Fig. 2.3 and can be ex-
plained as follows: for the x−component of the fine-grid velocity u, piecewise
linear interpolation of the coarse grid velocity U is used in the x− direction
and piecewise constant interpolation in the y−direction (and vice versa for
the y−direction velocity v). For ∆c

∆f
= 2 for example, the x−velocity fields on

the fine grid are consequently calculated as:

ui,j− 1
4

= ui,j+ 1
4

=
Ui− 1

2
,j + Ui+ 1

2
,j

2
(2.20)

ui− 1
2
,j− 1

4
= ui− 1

2
,j+ 1

4
= Ui− 1

2
,j (2.21)

ui+ 1
2
,j− 1

4
= ui+ 1

2
,j+ 1

4
= Ui+ 1

2
,j (2.22)

For typical cases investigated in the present study, a grid dependence test
revealed that a species balance grid of at least three times smaller size than
the hydrodynamics grid is required.

2.3.6 Computational sequence

The phenomena involving detailed hydrodynamics and mass transfer are
solved with the front tracking technique in a sequential manner. A diagram



30 ‖ � � ����� � � � � � � ���

i, j

ui,j− 1
4

∆c

Ui− 1
2
,j

Ui+ 1
2
,j

∆f

Figure 2.3: Illustration of the velocity interpolation technique used in the present
study for ∆c

∆f
= 2. The velocity at coarse cells is denoted by U while the interpolated

velocity on the fine grid is denoted by u.

of the computational sequence is presented in Fig. 2.4. For every flow time
step δtflow, first, the front is moved using the interpolated velocity at the
corner position of the marker followed by the remeshing procedure if neces-
sary. With the new front position, the spatial distribution of the F indicator
is updated by solving Eq. 2.10. Calculation of the new density and viscosity
fields is carried out afterwards. The pressure and velocity field are deter-
mined next by solving the Navier-Stokes equations using the new surface
force. Subsequently, with the new velocity field and old species concentra-
tion, the intermediate concentration is determined explicitly. The intermedi-
ate concentration is then used to calculate the species forcing term. Finally
the concentration field for the whole computational domain is determined
by solving Eq. 2.19 implicitly. This sequential procedure is repeated until a
specified simulation end time is reached.

2.4 Parallelization

To properly resolve the flow field, relatively large computational grids
are required. For most practical purposes the hydrodynamics grid can
easily exceeded 1003 cells while the corresponding species grid is then 3003

cells. Simulations with this amount of computational grid cells are not
possible on a single processor due to limitation of computational power
and memory. The method described in the previous section has been
implemented for calculations on distributed memory parallel computers
using the message passing interface (MPI) library [44,45].
Parallelization of the method was carried out by identifying the parts
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Move front + remeshing

Solve phase fraction

Update density & viscosity

Save solution

Determine surface force

Solve Navier-Stokes

Solve species balance

Determine species forcing term

Initialization

if t < tend
Finalization

Figure 2.4: Computational sequence diagram for the front tracking model.
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of the model that are related to the front and the liquid (see Table 2.2).
For the liquid and the front related computational tasks, two different
parallelization strategies are implemented. For the liquid, domain
decomposition is used. Here the rectangular, three-dimensional domain is
partitioned into even-sized subdomains and the task in each subdomain is
processed on a different processor. The data consistency is maintained by
interchanging data in each subdomain boundary with their corresponding
subdomain neighbor.
For the bubble front, the computational task is distributed by spreading
the set of bubbles evenly over the processors. The front element data
is structured independently for each bubble hence the front related
operations such as moving the front, remeshing, calculating the phase
fraction and the species forcing term can directly be calculated in parallel.
For the calculation which requires interaction (coupling) between bubble
front data and the Eulerian data an additional procedure is required.
This is because the bubble front data might require (or is required by)
Eulerian cells that belong to other processors. Here we use a multipurpose
buffer variable that is available on each processor. The local value of
a Eulerian quantity is copied to the buffer and by using the gather all
operator available in MPI, the local buffer is collected and redistributed
to all processors. Through this procedure, a Eulerian quantity for the
complete domain is available on each processor locally, which can be used
by a front element regardless which processor is holding the front data.
The exact opposite procedure is applied to map front bubble quantities to
the Eulerian cells.
The parallel procedure described here is simple and easy to implement.
However it has a drawback that processors can have an uneven load due to
an uneven number of bubbles on every processor. Also, in the case where
multiple sizes of bubbles are present in the system, a processor holding a
big bubble will have a higher load due to the higher number of elements
present in big bubbles compared to a small bubble. Nevertheless, since the
front related computations generally take a relatively small fraction of the
total computational time, the time penalty will be minor in many cases.

Table 2.2: Separation of the computational tasks for parallelization purposes.
Bubble front Liquid
Moving front + remeshing Navier-Stokes solver
Phase fraction solver Species balance solver
Calculation of surface force Density & viscosity calculation
Calculation of species forcing term
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2.5 Validation

Validation of the hydrodynamics part of the model has been reported by Van
Sint Annaland et al. [6] by comparing simulation results from the present
model with experimental data contained in the Grace diagram [5]. They
showed that the computed Reynolds number and bubble shape for various
bubble regimes compare very well with data obtained from the bubble dia-
gram.
The validation of the numerical method for the species balance equation is
presented here by comparing simulation results of a stationary spherical
bubble immersed in a large quiescent liquid pool with the analytical solu-
tion. The species balance equation in spherical coordinates is given by:

∂c

∂t
=

D

r2
∂

∂r

(

r2
∂c

∂r

)

(2.23)

with the initial condition c = 0 for r R and boundary conditions c = c0 for r =
R and c = 0 for r = ∞ which has the following analytical solution involving
an error function:

c

c0
(r) =

R

r

(

1 − erf
(

r −R√
4Dt

))

(2.24)

where R is the bubble radius.
In the numerical simulation, a bubble is fixed exactly in the center of a cu-
bic computational domain which has a diameter equal to 3.2db. The liquid
velocities are set to zero throughout the entire simulation domain. An initial
concentration of 1.0 is set inside the bubble and zero otherwise. Neumann
boundary conditions are applied on all confining walls. A computational
grid of 643 cells is used for the hydrodynamics, while 1923 cells are used for
solving the species balance equations. Furthermore a time step of 10−4 s and
species diffusivity of 1 × 10−4 m2/s are used.
Figure 2.5 (top) shows instantaneous species concentration profiles in the
vicinity of the bubble at t = 7 × 10−2 s. It can be seen that, due to the
concentration gradient present at the bubble-liquid interface, the species
diffuses from the bubble into the surrounding liquid. As the time advances,
the species diffuses from the interface and the amount of species present in
the liquid continually increases. Comparison between the computed radial
concentration profile and the analytical solution is presented in Fig. 2.5 (bot-
tom). As we can see for the four different times, the agreement between the
numerical and the analytical solution is very good, which indicates that the
method has been properly implemented and is able to resolve the species
distribution as well as its evolution correctly. Further validation by com-
paring the mass transfer coefficient obtained with the present model and a
potential flow model will be addressed in the next section.
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Figure 2.5: Mass transfer from a stationary spherical bubble with D = 1 × 10−4 m2/s.
(top) Normalized concentration distribution after 7 × 10−2 s. (bottom) Radial concen-
tration profiles. Comparison between numerical and analytical solutions.
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Figure 2.6: Bubble diagram of Grace [5] for the shape and terminal rise velocity of gas
bubbles in quiescent viscous liquids. The simulated cases are indicated with circles
(see Table 2.3).

2.6 Simulations

Grace [5] showed that the bubble shape and rise velocities in quiescent vis-
cous liquids can be represented in a single diagram provided that an appro-
priate set of dimensionless number is used. To demonstrate the capabilities
of the model in predicting bubble shape, flow field as well as the correspond-
ing dissolved species concentration distribution, three simulations for three
different bubble regimes are presented. The Grace diagram is used as our
reference for the bubble shape and rise velocities while the mass transfer
coefficients are compared with the potential flow model reported in Clift et.
al. [46].
A representation of the Grace diagram taken from [5] is shown in Fig. 2.6.
The simulation cases carried out in the present study are shown in the dia-
gram as dots (see Table 2.3 for precise numbers). The dimensionless param-
eters used are Morton (Mo), Eötvös (Eo) and Reynolds (Re) which respectively
are given by:

Mo =
gµ4

`∆ρ

ρ3
`σ

3
(2.25)



36 ‖ � � ����� � � � � � � ���

Table 2.3: Morton (Mo) and Eötvos (Eo) numbers for the three cases. For all cases the
Schmidt number is set to unity.

Case Mo Eo

1 1 × 10−4 1
2 9.2 × 10−3 40
3 5 × 10−7 3.125

Eo =
g∆ρd2

e

σ
(2.26)

Re =
ρ`v∞de

µ`
(2.27)

Here de is defined as the equivalent diameter of a spherical bubble with the
same volume as the bubble under consideration, moreover v∞ represents
the terminal rise velocity of the bubble.
In addition three dimensionless number are used to describe the mass
transfer, namely Schmidt (Sc), Sherwood (Sh) and Peclet (Pe) number, which
are respectively defined as:

Sc =
µ`

ρ`D
(2.28)

Sh =
klde

D
(2.29)

Pe =
v∞de

D
(2.30)

The computational domain used in our simulations is a rectangular box with
dimension of 4db × 4db × 8db. The computational grids used for the flow field
and species distribution are respectively 80× 80× 160 and 240× 240× 480 grid
cells. Using these grid settings, twenty computational cells in each direction
were used inside the bubble for the flow field at its initial state. Further-
more, a time step of 2× 10−5 s was taken for case 1 while 1× 10−4 s was used
for case 2 and 3. The size of the computational domain has been checked
carefully to warrant that it is large enough to mimic the conditions of an
infinite quiescent liquid while the grid resolution was tested to verify that
the computed rise velocities were not grid dependent.
For the Navier-Stokes equations, free slip boundary conditions were applied
at the domain walls, while for the species balance the Neumann bound-
ary is imposed on all boundaries. A fixed density and viscosity ratio of 100
was used. This density and viscosity ratio is believed to be high enough to
mimic gas-liquid systems with sufficient accuracy. The bubble initially has
a spherical shape and is positioned at (x0, y0, z0) = (2db, 2db, 6db) in an initially
quiescent liquid. To reduce the number of required computational cells, a
window shifting technique is used to maintain the bubble at its original po-
sition [3].
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Table 2.4: Comparison of the bubble regime and Reynolds numbers obtained from
the Grace diagram and simulation results.

Case Bubble regime Re

Grace Simulations
1 Spherical 5 5.05
2 Spherical cap 33 31.4
3 Ellipsoidal 103 108

The simulations for the single bubble cases were carried out in parallel on
a 12-processor Linux cluster (AMD Opteron 1.8GHz dualcore with 2GB of
RAM for each core and infiniband interconnect). For these cases, computa-
tional times of about 10 days are required to calculate 15, 000 time steps.

2.7 Results and discussion

2.7.1 Single bubble

Figure 2.7, 2.8 and 2.9 show series of snapshots of the bubble shape, ve-
locity field and the normalized dissolved species concentration at different
times. It can be seen that, depending on the physical parameters that were
used, bubbles that originally have a spherical shape gradually evolve into
different shapes except for case 1 where the bubble remains in its original
shape. A spherical cap bubble is found in Case 2 while in Case 3, the spheri-
cal bubble has transformed into an ellipsoidal bubble. Comparison between
the simulation results and the Grace diagram are presented in Table 2.4.
It can be seen that for the three cases, the computed Reynolds numbers
compare very well with the data obtained from the Grace diagram with dis-
crepancy less than 6%.
As the bubble starts to rise, the flow field in the vicinity of bubble starts to
develop and transports the dissolved species downstream. Transport of the
species near the bubble surface in general can be divided into two regions,
a roof and a wake region. For the three simulations presented in this work
the shape of the roof region is similar with only slight variation in the radius
of curvature. This shape similarity generates an akin species distribution at
the roof region of the bubble. As the Reynolds number increases, the convec-
tive transport is becoming more dominant. As a result, the thickness of the
species boundary layer at the roof region will decrease as the Reynolds num-
ber increases, generating higher interphase mass transfer due to a higher
concentration gradient (driving force).
In the wake region the shapes of the bubbles are different for the three cases,
generating different flow characteristics as well as species distribution. In
case 1, the bubble has a closed wake at the center bottom region of the
bubble. Due to the less pronounced convective transport, in this case the
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Figure 2.10: Mass transfer factor, Sh/
√

Sc, obtained with the present model in com-
parison with the potential flow model [46].

dissolved gas is found also outside the wake region. In case 2, the bub-
ble possesses a recirculation wake at the edge of the spherical cap bubble.
The high concentration of dissolved gas that is trapped below the bubble
is flowing through this edge generating a tubular region rich with dissolved
gas while the central region has a relatively low concentration of dissolved
gas. Finally in case 3, the concentration distribution shows a pattern simi-
lar to case 1 where a closed wake at the center bottom region of the bubble
is found. However due to the higher Reynolds number, the wake region is
somewhat bigger with the dissolved gas almost solely contained in it.
To describe the influence of Reynolds number on the mass transfer pro-
cess, mass transfer coefficients are calculated from the numerical results by
means of the following relation:

kl ≈
Vcell

a∆tHc0
Σ∀i∈cell

(

cn+1
i − cni

)

(2.31)

where a denotes the total instantaneous interfacial area, i.e. a = Σ∀mAm.

The mass transfer coefficient is compared with the potential flow model in
terms of the Sherwood number, which for a spherical bubble is given by [46]:

Sh =
2√
π

Pe1/2 (2.32)
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For oblate spheroidal bubbles, Eq. 2.32 is modified taking into account the
shape factor [47]:

Sh =
2√
π

Pe1/2

[

8e3E1/3

3
(

sin−1e− eE
)

]1/2

/

[

1 +
E2

2e
ln

(

1 + e

1 − e

)]

(2.33)

where E is the bubble aspect ratio and e is the corresponding eccentricity
calculated as:

e = (1 − E2)1/2 (2.34)

Figure 2.10 shows the comparison between the mass transfer factor
(Sh/

√
Sc) obtained from the simulations along with both the potential flow

model (spherical and spheroidal bubbles) using the actual eccentricity
obtained from the simulation. As can be seen the mass transfer rate indeed
increases as the Reynolds number increases. Comparison of both the
potential flow models shows that the effect of bubble shape is minor in this
Reynolds number range. By comparing our result with the potential flow
model we can conclude that the match is very good, nevertheless further
validation by comparing simulation results for a broader parameter range
(Eötvös, Morton, Reynolds and Schmidt number) is essential.

2.7.2 Multiple bubbles

In the previous section we have investigated the mass transfer process from
a single bubble rising in a quiescent liquid. A real bubble column reactor
however, contains multiple bubbles that move collectively as swarms of bub-
bles. It is well known that bubbles that move in a group behave differently
than a single bubble. The interaction between the bubble and the liquid
phase is perturbed by the bubbles motion influencing the hydrodynamic be-
havior of individual bubbles. One could expect that this phenomenon will
also influence the mass transfer behavior, where the species dissolved in the
liquid surrounding a bubble might not come from the bubble itself but also
from neighboring bubbles. As a first step to have a better understanding
on how neighboring bubbles influence mass transfer, a simulation with a
cluster of bubbles is carried out.
The configuration of case 3 is used as a base for this simulation. The cluster
of bubbles is arranged in a 2 × 2 × 3 array with a center to center distance
between the bubbles of 2db. A computational domain of 6.4db × 6.4db × 11.2db

is used to accommodate the bubbles present in the domain. The computa-
tional grids used for this case are 128× 128× 224 and 384× 384× 672 grid cells
respectively for the hydrodynamics and species grid. With this configuration
the same grid per bubble density is used for both the single and multiple
bubble case, furthermore the distance between the bubble and the wall is
also similar. For this case, the simulation was carried out using 32 proces-
sors in NSF Aster system (Intel Itanium 2, 1.3 GHz). The simulation time for
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this case is about 3 days for every 1000 time steps.
Figures 2.11 and 2.12 shows series of snapshots of the bubble cluster simu-
lation consisting of bubble shape, velocity field and the normalized dissolved
species concentration at different times while Fig. 2.13 shows the time his-
tory of velocity and mass transfer of the bubble cluster in comparison with
the single bubble case. Note that for the bubble cluster, mass transfer is
calculated using a as the total instantaneous interfacial area from all bub-
bles while the velocity is the cluster velocity.
Just like in its single bubble counterpart, at the beginning all the bubbles
that originally have a spherical shape gradually evolve into ellipsoidal bub-
bles. Trailing of dissolved gas concentration starts to appear behind each
bubble. In this stage both rise velocity and mass transfer coefficient is sim-
ilar for the single bubble case and the bubble cluster. At about t = 0.15 s
the wakes from the leading bubbles start to reach the trailing bubbles. Sub-
sequently the trailing bubbles are accelerated in the wake of the leading
bubbles while the dissolved concentration from the leading bubbles starts
to cover the roof region of the trailing bubbles. Because of this situation,
the bubble cluster rise velocity starts to increase while the mass transfer
coefficient starts to decrease due to the lower driving force.
For the single bubble case, the terminal values for velocity and mass trans-
fer are reached after t = 0.3 s. However for the bubble cluster, the velocity
keeps increasing while the mass transfer keeps decreasing after this pe-
riod, indicating that the trailing bubbles are still accelerating while receiving
higher dissolved gas concentration from the leading bubbles. At t = 0.5 s the
second row of the bubbles catches up with the first row; here the bubbles
experience shape distortion and start to change their course. Later on, the
bubbles in the second row move towards the walls next to the bubbles of the
first row. Meanwhile, the bubbles from the third row start to catch up with
the bubbles from the first and second rows, which eventually makes all the
bubbles reside at a similar vertical position at t = 1.1 s.
The dynamic behavior of the bubbles is affecting the mass transfer coeffi-
cient as the mass transfer is significantly decreased when the bubbles are
located in the wake of other bubbles. When the second row of bubbles is ex-
posed to fresh liquid, the overall mass transfer starts to increase. However,
when the bubbles from the third row are approaching the leading bubbles,
the overall mass transfer decreases again. Eventually, the mass transfer co-
efficient starts to increase again when all the bubbles are arranged around
the same vertical position, which makes that all bubbles are exposed to fresh
liquid.
It is important to notice that even when the bubbles are nearly touching,
they do not automatically merge due to the distinct Lagrangian interface
representation. Instead, the pressure will start to build between the bub-
bles, which eventually will lead to a repulsion force pushing the bubbles
away from each other. This feature is a crucial advantage of front tracking
compared to the lattice Boltzmann or VOF techniques in case swarm effects
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need to be investigated.
From the simulation of the cluster of bubbles, it is clear that both the rise
velocity and mass transfer coefficient are different compared with the single
bubble counterpart. Hence, in order to use the front tracking method prop-
erly to derive closures that can be used for more coarse grained models such
as the Euler-Euler or the Euler-Lagrange model, simulations with multiple
bubbles are necessary. Only by considering multiple bubbles, we can in-
clude swarm effects to our closures.

2.8 Conclusions

In this chapter a three-dimensional Front Tracking model, taking into ac-
count mass transfer calculated with an immersed boundary technique, has
been presented. Simulations for three different physical properties have
been conducted to demonstrate the capabilities of the model. The computed
terminal Reynolds numbers and shapes of the bubbles rising in quiescent
liquids are compared with data taken from the bubble diagram of Grace. It
was demonstrated that the computed shapes and rise velocities agree very
well with the data taken from this diagram. We found that different bubble
shapes lead to different flow fields in the vicinity of the bubble, which influ-
ences the transport of the dissolved gas in the liquid. It is also found that the
mass transfer coefficient agrees very well with the potential flow theory. Fi-
nally from a simulation with a cluster of bubbles, we have observed bubbles
rising in the wake of other bubbles will experience an increase in the ter-
minal rise velocity while in the same time the mass transfer is significantly
decreased compared to the single bubble case.
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Notation

Am area of marker m, m2

c species concentration, kmol m−3

c0 concentration inside the bubble, kmol m−3

d diameter, m
D distribution (mapping) function, dimensionless
D species diffusion coefficient, m2 s−1

e bubble eccentricity, dimensionless
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E bubble aspect ratio, dimensionless
Eo Eötvös number, dimensionless
F phase indicator function, dimensionless
G vector containing information of the interface, m−1

f total volumetric forcing term, kmol m−3s−1

Fs volumetric forcing term, kmol m−3s−1

Fσ volumetric surface force, N m−3

g gravitational acceleration, m s−1

H Henry constant, dimensionless
Mo Morton number, dimensionless
n unit normal vector
kl liquid side mass transfer coefficient, m s−1

p pressure, N m−2

Pe Peclet number, dimensionless
r radial coordinate, m
r position vector, m
R bubble radius, m
Re Reynolds number, dimensionless
Sc Schmidt number, dimensionless
Sh Sherwood number, dimensionless
t time, s
T transpose of a tensor
t tangent vector, dimensionless
tk length of marker edge, m
u velocity vector, m s−1

Vcell volume of computational cell, m3

x position vector, m
x Cartesian coordinate, m
y Cartesian coordinate, m
z Cartesian coordinate, m

Greek letters

∆t time step, s
∆Vm volume associated with marker m, m3

µ viscosity, kg m−1 s−1

ωi distribution function for computational cell i, dimensionless
ρ density, kg m−3

σ interfacial surface tension, N m−1

Indices

b bubble
e equivalent
g gas
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i the i− th computational cell
` liquid
m surface element or marker
n time level
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3
Discrete Bubble Model:

From hydrodynamics to mass transfer and
chemical reaction§

”To manage a system effectively, you might focus on the inter-
actions of the parts rather than their behavior taken separately.” -
Russell L. Ackoff

Abstract

A 3D discrete bubble model is adopted to investigate complex behavior in-
volving hydrodynamics, mass transfer and chemical reactions in a gas-liquid
bubble column reactor. In this model a continuum description is adopted for
the liquid phase and additionally each individual bubble is tracked in a La-
grangian framework, while accounting for bubble-bubble and bubble-wall in-
teractions via an encounter model. The mass transfer rate is calculated for
each individual bubble using a surface renewal model accounting for the in-
stantaneous and local properties of the liquid phase in its vicinity. The distri-
butions in space of chemical species residing in the liquid phase are computed
from the coupled species balances considering the mass transfer from bubbles
and reactions between the species. The model has been applied to simulate
chemisorption of CO2 bubbles in NaOH solutions. Our results show that apart
from hydrodynamics behavior, the model is able to predict the bubble size dis-
tribution as well as temporal and spatial variations of each chemical species
involved.

§This chapter is based on: Darmana et al. [1,2]
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3.1 Introduction

Bubble columns are used in a variety of industrial processes including large-
scale production of base chemicals and synthetic fuels. Many processes in-
volve gas-liquid mass transfer with accompanying reactions between the gas
and the liquid phase itself or with components dissolved or suspended in it.
Despite the widespread application of bubble columns and substantial re-
search efforts devoted to understand their behavior, detailed knowledge on
the fluid flow, mass transfer and chemical reactions as well as their interac-
tions are still lacking.
The coupling between these phenomena is illustrated in Fig. 3.1. The chem-
ical reaction rate depends on the local availability of the species which is
determined by the interphase mass transfer process and the mixing induced
by the bubbles. The interphase mass transfer depends on the mass transfer
coefficient, the specific interfacial area and chemical reaction rate. The mass
transfer parameters are a function of the local prevailing hydrodynamics [3],
which in its turn are affected by the bubble behavior and variation of phys-
ical properties due to in-homogeneous chemical species distributions. It is
these complex interactions that make the overall prediction of performance
and scale-up of this type of reactor very difficult.
In recent years, computational fluid dynamics (CFD) has emerged as a pow-
erful tool for both scientists and engineers. CFD modelling of dispersed
gas-liquid two-phase flows has shown remarkable progress over the last
decade. Two models are widely used for describing hydrodynamics of bubble
columns, i.e. the (E-E) model and (E-L) model. The E-E model employs the
volume-averaged mass and momentum conservation equations to describe
the time dependent motion of both phases [4–6]. The number of bubbles
present in a computational cell is represented by a volume fraction and the
information of the bubble size distribution is often obtained by incorporating

Chemical reaction

db
kl

E

a Fluid flowMass transfer

Figure 3.1: Inter-dependency diagram of fluid flow, mass transfer and chemical reac-
tion.
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population balance equations which take into account break-up and coales-
cence of bubbles as well as growth or shrinkage of bubbles as a consequence
of mass transfer. The E-L model on the other hand adopts a continuum de-
scription for the liquid phase and additionally tracks each individual bubble
using Newtonian equations of motion. This allows for a direct consideration
of additional effects related to bubble-bubble and bubble-liquid interaction.
Mass transfer with and without chemical reaction, bubble coalescence and
re-dispersion can be incorporated directly [6–8]. Unlike the E-E model, the
E-L model does not require additional models to predict the bubble size dis-
tribution since this information is already part of the solution. A drawback
of the E-L model compared to the E-E model is its limitation on the number
of bubbles that can be handled (i.e. less than O

(

105
)

) since for each indi-
vidual bubble one equation of motion needs to be solved. This makes this
method less attractive in handling large scale bubble columns.
Based on the E-E model, Fleischer et al. [9] have pioneered to combine hy-
drodynamics, mass transfer and chemical reactions into a one-dimensional
plug flow model accounting for axial dispersion and heat effects. The model
consists of a liquid mass balance for each chemical species involved and
momentum and energy balances for the liquid phase. The mass transfer
rate is calculated from the two film theory based on the bubble size pre-
dicted by a population balance model. This model has been used to predict
transient behavior of chemisorption of carbon dioxide into an aqueous so-
lution of sodium hydroxide in a gas-lift reactor. A similar method was used
by Márquez et al. [10, 11] to study the coupling between hydrodynamics
and chemical reaction without mass transfer in an external-loop gas liquid
reactor. This model also has been adopted in several CFD software pack-
ages, which are used to solve a wide variety of practical two phase prob-
lems [12–14].
The model of Fleischer is able to qualitatively predict the transient behavior
of a chemisorption process in a slender cylindrical bubble column. How-
ever, for more general geometries, experimental investigations by Becker et
al. [15] and Chen et al. [16] indicate that bubble columns generally show an
unsteady flow with considerable spatial variation of the key hydrodynamic
quantities. Numerical simulations reported by Delnoij et al. [17], Sokolichin
and Eigenberger [6] and Deen et al. [4] also show that unsteady vortical
structures appear in 2D and 3D simulations. These results suggest that a
1D plug flow model as was used in Fleischers model is not able to capture
the unsteady hydrodynamics behavior of a bubble column.
In this chapter we present a detailed 3D model for the hydrodynamics, mass
transfer and chemical reactions in an isothermal bubble column operated in
the homogeneous regime. The Euler-Lagrange model is adopted to solve the
hydrodynamics since incorporation of the bubble size distribution and in-
terphase mass transfer calculation is relatively straightforward. The model
is applied to study the coupling of hydrodynamics, gas-liquid mass transfer
and chemical reactions in a square bubble column. First we will focus on the
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hydrodynamics of the column and compare our results with experimental
and numerical results obtained by Deen et al. [4]. The mixing characteris-
tics of the column will subsequently be studied with the use of hydrodynam-
ics and species tracking models. Next the physical absorption of CO2 into
water will be addressed and finally the complete model will be used to in-
vestigate chemisorption of CO2 bubbles into an aqueous solution of sodium
hydroxide.

3.2 Model formulation

The three-dimensional model described in this chapter is an extension of
the hydrodynamic Euler-Lagrange model of Delnoij et al. [17], which is ap-
plicable to disperse (homogeneous) regimes, which are characterized by low
gas velocities and relatively small spherical bubbles that do not coalesce nor
break-up. The interphase mass transfer is calculated for each bubble us-
ing the surface renewal theory which takes into account both physical and
chemically enhanced mass transfer. The spatial distributions of chemical
species residing in the liquid phase are computed from the coupled species
conservation equations formulated in the Eulerian framework. Moreover,
the numerical implementation of direct bubble-bubble interaction and the
two-way coupling between phases will be addressed in section 3.3.

3.2.1 Bubble dynamics

The motion of each individual bubble is computed from the bubble mass
and momentum equations. The liquid phase contributions are taken into
account by the interphase mass transfer rate ṁ and the net force

∑

F ex-
perienced by each individual bubble. For an incompressible bubble, the
equations can be written as:

ρb
d (Vb)

dt
= (ṁl→b − ṁb→l) (3.1)

ρbVb
dv

dt
=
∑

F −
(

ρb
dVb

dt

)

v (3.2)

Here the gas density ρb is assumed to be constant considering the limited
height of the simulated column. The interphase mass transfer term ṁ is
calculated using a method, which will be describe in section 3.2.4. The net
force acting on each individual bubble is calculated by considering all the
relevant forces. It is composed of separate, uncoupled contributions such
as: gravity, pressure, drag, lift and virtual mass:

∑

F = FG + FP + FD + FL + FV M (3.3)
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Table 3.1: Overview of forces acting on a bubble.

Force Closure
FG = ρbVbg −
FP = −Vb∇P −
FD = − 1

2
CDρlπR2

b
|v − u| (v − u) CD = 2

3

√
Eö

FL = −CLρlVb (v − u) ×∇× u CL = 0.5

FV M = −CV MρlVb

“

Dbv

Dbt
− Dlu

Dlt

”

CV M = 0.5

Expressions for each of these forces can be found in Table 3.1 (see [8]
for a discussion on the forces experienced by a bubble). Note that the
closure models used in this chapter is for model demonstration only, more
sophisticated closure models may be used to obtain better results.

3.2.2 Liquid phase hydrodynamics

The liquid phase hydrodynamics is represented by the volume-averaged
Navier-Stokes equation, which consists of continuity and momentum
equations. The presence of bubbles is reflected by the liquid phase volume
fraction εl, the source term that accounts for the interphase mass transfer
Ṁ , and the total interphase momentum transfer due to forces and mass
transfer Φ:

∂

∂t
(εlρl) + O · εlρlu =

(

Ṁb→l − Ṁl→b

)

(3.4)

∂

∂t
(εlρlu) + O · εlρluu = −εlOP − O · εlτl + εlρlg + Φ (3.5)

The liquid phase flow is assumed to be Newtonian, thus the stress tensor τl

can be represented as:

τl = −µeff,l

[

(

(Ou) + (Ou)
T
)

− 2

3
I (O · u)

]

(3.6)

where µeff,l is the effective viscosity. In the present model the effective vis-
cosity is composed of two contributions, the molecular viscosity and the
turbulent viscosity:

µeff,l = µL,l + µT,l (3.7)

Deen et al. [4] did extensive work on the implementation and verification of a
model that could account for the sub-grid scale turbulence. They concluded
that the Large Eddy Simulation (LES) turbulence model implemented in the
Euler-Euler framework outperformes the k−ε model in predicting the exper-
imentally observed dynamic behavior of the flow in a square bubble column.
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Recently van den Hengel et al. [18] and Láin and Sommerfeld [19] have suc-
cessfully employed LES in combination with the Euler-Lagrange model and
obtained good agreement with experimental data in a square and cylindrical
bubble column. Following them, the turbulent viscosity µT,l represents the
contribution of the subgrid scales. In the present study µT,l is described by
the Smagorinsky [20] model, which is expressed as:

µT,l = ρl (CS4)
2 |S| (3.8)

where CS is a model constant with a typical value of 0.1, S the characteristic
filtered strain rate and 4 = (Vcell)

1/3 the SGS length scale.

3.2.3 Chemical species

The fraction of a chemical species j in the liquid mixture is represented by
mass fraction Y j

l . The presence of various chemical species are modeled
through a transport equation for each species given by:

∂

∂t

(

εlρlY
j
l

)

+ O ·
(

εl

(

ρlulY
j
l − Γj

effOY j
l

))

=
(

Ṁ j
b→l − Ṁ j

l→b

)

+ εlS
j (3.9)

where Sj is the source term accounting for production or consumption of
species j due to homogeneous chemical reaction and

Γj
eff =

µeff,l

Scj
(3.10)

For a mixture, which consists of NS chemical species, we only have to solve
NS − 1 transport equations represented by eq. (3.9). The remaining species
mass fraction can be calculated from the overall species balance using the
following relation:

NS
∑

j=1

Yj = 1 (3.11)

For a mixture consisting of NS species, the liquid density and viscosity are
taken as the average of properties of each species as follow:

1

ρl
=

NS
∑

j=1

Y j
l

ρj
l

(3.12)

µL,l =

NS
∑

j=1

Y j
l µ

j
l (3.13)
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Figure 3.2: Schematic representation of gas-liquid mass transfer.

3.2.4 Mass transfer

The interphase mass transfer in a bubble with radius Rb is considered to be
driven by mass fraction gradients. The mass fraction of a chemical species
j in the liquid phase and bubble are represented by Y j

l and Y j
b respectively,

while the value of both quantities at each side of the bubble-liquid interface
is given by Y j∗

l and Y j∗
b (see Fig. 3.2).

The mass transfer in a bubble due to a mass fraction gradient of species j is
represented as:

ṁj
b = Ekj

lAbρl

(

Y j∗
l − Y j

l

)

(3.14)

where E is the due to chemical reactions, Ab is the surface area of the bubble
and kj

l is the mass transfer coefficient for species j, which is determined
using a Sherwood relation for a moving bubble [21]:

Sh = 2 + 0.6415
(

ReScj
)1/2

(3.15)

When the mass transfer resistance lies in the liquid phase, the mass fraction
on the liquid side of the interface can be determined using a Henry constant:

Y j∗
l = HjY j

b

ρb

ρl
(3.16)

where Hj is the Henry constant for the species j.
The total mass transfer rate is the sum of the mass transfer rates of all
species j, thus:

ṁb =

NS
∑

j=1

ṁj
b (3.17)

The mass transfer from the liquid to a bubble can be written as ṁl→b =
max(ṁb, 0), while the mass transfer from a bubble into the liquid is ṁb→l =
max(−ṁb, 0).
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3.3 Numerical implementation

In this section the numerical implementation of the model described in sec-
tion 3.2 will be described briefly.

3.3.1 Time marching

To resolve the time-dependent motion of the bubbles and the liquid phase,
as well as the chemical species, four different time scales are considered.
The biggest time step (δtflow) is employed in solving the Navier-Stokes equa-
tions to obtain the macroscopic liquid flow field. The interphase mass and
momentum transfer are resolved on the scale of the bubble time step (δtbub).
To account for the possible encounters (collisions) between bubbles and the
displacement of the bubbles an even smaller time step (δtab) is used. The
chemical species transport equation is solved using a time step δtspec similar
to the δtflow. However, for chemical species, which undergo fast chemical
reactions a smaller time step is required, in order to prevent numerical in-
stability.

3.3.2 Bubble tracking and direct bubble-bubble interaction

The mass and momentum conservation equation of the bubbles are ordinary
differential equations. These equations are integrated numerically using
a first order explicit scheme. For a general time integrable variable ξ the
formula can be written as:

ξt+1 = ξt +

(

dξ

dt

)t

δtbub (3.18)

The mass and momentum balance equations for each bubble are solved
sequentially. First the mass transfer rate is calculated explicitly using the
method describe in section 3.2.4 to obtain the bubble volume rate of change.
Using the numerical scheme described in eq. 3.18, the bubble volume rate
of change is integrated to obtain a new bubble size.
Subsequently the bubble momentum equation is solved by first calculating
the interphase momentum and mass transfer term explicitly. The acceler-
ation of each individual bubble is obtained in a straight forward manner
using eq. 3.2. The new bubble velocity is obtained by integrating the accel-
eration using eq. 3.18.
The collision between bubbles is modeled using a so called hard sphere
model following the work of Hoomans et al. [22]. In this method a constant
time step δtbub is used to account for the forces acting on a bubble. Within
this time step, the velocity of bubbles is assumed to change only due to
binary collisions between the bubbles. A sequence of collisions is then pro-
cessed, one collision at a time.
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To predict the collision between bubbles, we extend the model that is widely
used in the field of molecular dynamics [23] by taking into account the rate
of change of the bubble size. Consider two bubbles, a and b, of radius Ra and
Rb respectively. At time t the bubbles are located at ra and rb with velocity
va and vb and bubble growth rates (in terms of bubble radius growth rate)
Ṙa and Ṙb. If those bubbles are to collide at time t + δtab then the following
equation must be satisfied:

|rab (t+ δtab)| = |rab + vabδtab| = (Ra +Rb) + (Ṙa + Ṙb)δtab (3.19)

where rab = ra − rb and vab = va − vb and δtab is the time until the collision.
The second and third term in eq. (3.19) can be written in the quadratic
equation in δtab as follow:

Aδt2ab + 2Bδtab + C = 0 (3.20)

with

A = v2
ab − (Ṙa + Ṙb)

2

B = rab · vab − (Ra +Rb)(Ṙa + Ṙb)

C = r2
ab − (Ra +Rb)

2

If B > 0 then the two bubbles are moving away from each other and they will
not collide. Otherwise (if B < 0) there is a chance in a certain period that the
bubbles will be collide. Provided that eq. (3.20) has a positive discriminant,
two positive roots will arise and the smaller will correspond to the impact:

δtab=
−B −

√
B2 −AC

A
(3.21)

In order to calculate the collision time efficiently we use a so called bubble
neighbor region. Only bubbles located inside this region are considered to be
possible collision partners. Hoomans et al. [22] and Delnoij et al. [17] use a
rectangular shape to represent the neighbor region, however in this work we
choose a spherical shaped neighbor region since this shape is more natural
with respect to the bubble shape. For all the bubbles inside the neighbor
area of a certain bubble a (see Fig. 3.3), we calculate the collision time δtab

between bubble a and the possible collision partner b using eq. (3.20) . Note
that the collision partner may also be one of the column walls or the top
surface.
For all the possible collision pairs, the smallest δtab is selected. This δtab

will be used to update both size and position of all bubbles. However for
bubbles a and b, which correspond to the smallest δtab, a collision procedure
is carried out and new velocities are determined.
A pair of colliding bubbles will bounce during the collision event. The veloc-
ities of both bubbles after the bounce are determined by splitting the initial
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a

Figure 3.3: When the skin-to-skin distance between bubble a and neighbouring bub-
ble b is less than the boundary parameters, than bubble b belongs to the neighbour
list of bubble a.

velocities into a normal and tangential component with respect to the line
connecting the centers of mass of both bubbles. The tangential component
does not change due to a collision, while the new normal component is cal-
culated from:

vaftercollision
n,a = 2

mavn,a +mbvn,b

ma +mb
− vn,a (3.22)

where the new velocity of bubble b is calculated in a similar way.

3.3.3 Liquid flow field

A finite difference technique was adopted to discretize the governing equa-
tions of the liquid phase. The volume-averaged Navier-Stokes equations
have been solved with a semi-implicit method for pressure linked equations
(SIMPLE-algorithm). A staggered grid is employed to prevent numerical in-
stability. First order explicit time differencing is applied for the time deriva-
tive. The convective terms of the mass and momentum conservation equa-
tions are treated implicitly using a second order accurate Barton scheme
[24]. Moreover the pressure gradient is treated implicitly, while the inter-
phase mass and momentum transfer and all other terms are treated ex-
plicitly. The resulting set of linear equations yields a discretized pressure-
Poisson equation, which is solved iteratively using the incomplete Choleski
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conjugate gradient (ICCG) method, which is incorporated in the PETSc li-
brary [25].

3.3.4 Chemical reactions and species transport equations

All the terms in the species transport equation are discretized using a fully
implicit method, except for the interphase mass transfer and chemical re-
action rate, which appear as source terms and are treated explicitly. The
convective flux is treated using a first order accurate upwind scheme which
is corrected using deferred correction method [26] in order to be consis-
tent with the second order Barton scheme method, which is used in solv-
ing the Navier-Stokes equation. The resulting discretized equations for all
species are solved simultaneously using an algorithm similar to that used
by Hjertager [27] in solving the mass conservation equations in a multi-fluid
model. Using this technique, the algebraic constraint for the species equa-
tion (eq. 3.11) is automatically imposed, yielding mass fractions for each
species which are bounded between 0 and 1.

3.3.5 Interphase coupling

The coupling between the liquid phase and the bubbles is accomplished
through the liquid phase volume fraction εl, the interphase momentum
transfer rate Φ, as well as the mass transfer rate from and to the bubbles.
Since the liquid phase and the bubbles are defined in different reference
frames (i.e. Lagrangian and Eulerian), a mapping technique which
correlates the two reference frames is required. This mapping technique
translates the Lagrangian bubble quantities to the Eulerian grid, which are
required as closure for the liquid phase equations and vice versa.
Most of the mapping techniques in literature are developed for bubbles,
which are much smaller than the grid size [7,17]. However, in order to allow
for changes in bubble size due to coalescence and mass transfer processes,
it is desirable that bubbles can become larger than the computational grid
size.
In this section we propose a new mapping technique, which allows us to
simulate bubbles, which can be smaller as well as bigger than the Eulerian
grid size.

Porosity mapping

The bubble volume fraction εb in a computational cell is calculated from the
volume occupied by the bubbles present in the cell under consideration:

εb =
1

Vcell

∑

∀i∈cell

ζi
cellV

i
b (3.23)



64 ‖ � � 
 � � � ��� � ����� � � � � � � �

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

ζ V
bubblecell

Bubble
Cube representation

Figure 3.4: Schematic representation of the porosity mapping technique.

with ζi
cell is the volume fraction of the i−th bubble included in the cell under

consideration.
The liquid volume fraction εl is calculated using the algebraic expression:

εl = 1 − εb (3.24)

Equation (3.23) requires a value ζ i
cell which unfortunately depends on the

shape of the bubbles. The prediction of the bubble shape is a tedious task,
since it depends on various parameters such as fluid properties, bubble size
and the time-dependent flow field around the bubble. Even for a simple
shape such as a sphere or ellipsoid, the calculation of ζ i

cell requires signifi-
cant computational effort, especially if the size of bubble is larger than the
size of the computational grid. For this reason, we use a cubic shape to
represent the bubble following the work of Tomiyama et al. [7] with the ar-
guments: (1) the calculation of ζ i

cell is easy and takes little CPU time; and (2)
since the actual bubbles take time-dependent complex shapes, there may
be little difference between the cubic approximation and other, more sophis-
ticated approximations such as spherical and ellipsoidal shapes.
Figure 3.4 shows how we can map portion of a bubble into the involved
computational cells. Special attention should be given to cells, which are
entirely occupied by a bubble and do not allow for the solution of the liquid
phase conservation equations. To overcome this problem the liquid phase
porosity has been forced to have the lowest value εl = εlow. The value of εlow

that we choose will influence the accuracy as well as the computational cost
to solve the problem. We found that by taking εlow = 0.05 both aspects are
treated in a satisfactory manner.
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Figure 3.5: Notation used for mapping Eulerian data at points A − H to Lagrangian
point Q (after Tomiyama et al. [7]).

Lagrange to Euler mapping

In order to close eqs. (3.4) - (3.9) a relation between a Lagrangian quantity
of bubbles ω and the respective Eulerian value Ω is required. Since Ω is
given as a volume-averaged value of ω in a unit volume, let us consider a
computational cell in 3D Cartesian coordinates which has volume Vcell. For
all bubbles i in this cell, the relation between ω and Ω can be written as:

Ω =
1

Vcell

∑

∀i∈cell

ζi
cellV

i
b ω (3.25)

where ζi
cell is calculated with the cubic shape representation, which was

introduced earlier.

Euler to Lagrange mapping

To evaluate forces experienced by each bubble, we need information of liquid
quantities which are defined on the Eulerian grid. For this purpose we adopt
the volume weighing method, which was used by Delnoij et al. [17] and
Tomiyama et al. [7]. As shown in Figure 3.5, the value of any physical
quantities Ω at point Q (denotes as ω) can be calculated as:

ω = λ1λ2λ3ΩA + λ1λ2λ6ΩB + λ1λ5λ6ΩC + λ1λ5λ3ΩD

+λ4λ2λ3ΩE + λ4λ2λ6ΩF + λ4λ5λ6ΩG + λ4λ5λ3ΩH (3.26)

where 0 ≤ λk ≤ 1 and λ1 + λ4 = λ2 + λ5 = λ3 + λ6 = 1
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3.3.6 Computational sequence

The complex phenomena involving hydrodynamics, mass transfer and
chemical reactions are solved in a sequential manner. A diagram of the
computational sequence is presented in Fig. 3.6. For every flow time step
δtflow, first, the interphase mass and momentum transfer are calculated
explicitly for each individual bubble. The liquid quantities required to
calculate these terms are obtained from the Euler to Lagrange mapping
technique (section 3.3.5). Using the interphase mass and momentum
transfer, the bubbles size and position are updated taking into account
direct bubble-bubble and bubble-wall interaction (section 3.3.2).
The available bubble size and positions are mapped to the Eulerian mesh
using the porosity mapping method (section 3.3.5) to obtain the liquid
phase porosity in every Eulerian computational cell. The interphase mass
and momentum transfer rate, which was previously calculated from every
individual bubble is also mapped to the Eulerian cell using the Lagrangian
to Eulerian mapping technique (section 3.3.5). Using the new liquid
porosity as well as the interphase mass and momentum transfer rate, the
liquid hydrodynamics are solved to obtain the liquid phase hydrodynamics
at the new time level (section 3.3.3). Finally, the chemical reactions
and species transport equation are solved to obtain a chemical species
distribution at the new time level (section 3.3.4). This sequential procedure
is repeated until a specified simulation end time is reached.

3.4 Geometry and boundary condition

Deen et al. [4] performed particle image velocimetry (PIV) measurements in
a 3D bubble column filled with distilled water. The column has a square
cross-section (W ×D) of 0.15 × 0.15 m2 and a height (L) of 0.45 m. Air with a
superficial gas velocity of 4.9 mm/s was introduced into the system through
a perforated plate. The plate contained 49 holes with a diameter of 1 mm,
which were positioned in the middle of the plate at a square pitch of 6.25mm.
The column is modeled using the DBM code, which was described in the
preceding section. The computational grid consists of 30 × 30 × 90 cells and
the flow time step (δtflow) is 1.0 × 10−3 s. Preliminary calculations revealed
that this configuration gives a grid and time step independent solution. The
boundary conditions are imposed to the column using the flag matrix con-
cept of Kuipers et al. [28] as can be seen in Fig. 3.7. The definition of each
boundary condition can be seen in Table 3.2. The configuration of bound-
ary conditions used in the simulations has been carefully investigated. The
prescribed pressure cells close to the column surface wall are required as
inlet as well as outlet channel to compensate for the change of liquid volume
due to bubbles entering and leaving the column. The width of this pressure
cell slit is one third of the total width of the column and located in the mid-
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Initialization

Finalization

Update bubbles size and position

if t < tend

Resolve direct bubble-bubble interaction

Solve chemical species and reactions

Solve interphase mass and momentum transfer for bubbles

Save the solutions to file

Solve liquid hydrodynamics

Figure 3.6: Computational sequence diagram of the DBM.



68 ‖ � � 
 � � � ��� � ����� � � � � � � �

}

NZ

NX

NX

Horizontal plane (slit region)Vertical plane

NY

1

2/6

5 5

5 5

5555

3/6

3/6

1

4/63/6 3/6

4/6 3/6

3/6 3/6

3/6
4/6

3/6
4/6 3/6

4/6

3/6

4/6

3/6

3/6

Figure 3.7: Typical boundary conditions used in simulations with the discrete bubble
model. The vertical plane is at j = NY/2 while a slit is defined at k = NZ − 1

Table 3.2: Cell flags and corresponding cell types used in defining boundary condi-
tions.

flag Boundary conditions
1 Interior cell, no boundary conditions specified
2 Impermeable wall, free slip boundary
3 Impermeable wall, no slip boundary
4 Prescribed pressure cell, free slip boundary
5 Corner cell, no boundary conditions specified
6 Neumann boundary for species transport equation

`

∇Y j · −→n = 0
´

dle. It was found that this configuration avoids hydrodynamic instabilities
developing at the top surface of the column. Furthermore for the species
transport equations, a Neumann boundary condition is used in all of the
boundary cells.
Each hole in the perforated plate is modeled as a position in the bottom of
the column where bubbles with specific size enter the column with a fixed
velocity. All the bubbles entering the column have a diameter of 4 mm as
has been experimentally observed by Deen et al. [4]. The distance between
the center of two consecutive bubbles released from a single hole δb is set
to 2.5 × Rb. This arrangement is made to avoid unnecessary collisions be-
tween two consecutive bubbles immediately after they enter the column. The
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velocity of bubbles entering the column is determined from the superficial
velocity through the following formula:

vz,enter =
vsδbW ×D

NhVb
(3.27)

with vs the superficial gas velocity, W × D the cross sectional area of the
column and Nh is number of holes.
For all of the holes, the vertical position of the bubbles underneath the
bottom plate is generated in such way that none of the bubbles enters
the column at the same time. This was implemented in order to prevent
(artificial) pulsing behavior of the incoming bubbles, which would occur if
bubbles enter the column through all holes simultaneously. By doing so,
the occurrence of undesired pressure fluctuations at the top of the column
was prevented.
When a bubble hits the top boundary of the column, the bubble is marked
to be removed from the column. The removal procedure is very important
since it can influence the overall flow inside the column and in some case
may induce instabilities in the numerical solution. When a bubble is
marked to be removed from the column, its velocity and interphase mass
and momentum transfer to the liquid phase are no longer updated. The
bubble is still however, moving with a constant velocity using the last
velocity value calculated immediately before it touches the top boundary.
Using this velocity, the bubble is passing the top boundary according to the
normal bubble time step. The portion of bubble which still resides in the
column is still accounted for in the calculation of the liquid phase volume
fraction. When the entire bubble is completely above the top boundary,
the bubble is disposed from the bubble list which concludes the bubble
removal procedure.
For a typical bubble size used in the simulation, the whole process of
removing a bubble takes around 10−2 s and within this interval the liquid
phase gradually adapts the change in the volume fraction. Compared with
the instantaneous bubble removing technique used by Delnoij et al. [17],
the method presented here can eliminate numerical instabilities at the top
boundary especially when removing a bubble which has bigger size than
the computational grid cell.

3.5 Verification

To verify the method for calculating liquid phase porosity, the Lagrangian to
Eulerian mapping as well as the Eulerian to Lagrangian mapping, we con-
sider a case in which a bubble rises through a quiescent liquid. The terminal
rise velocity of the bubble resulting from our simulations is compared with
the analytical solution. For a bubble rising with a constant velocity through
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a quiescent liquid the buoyancy force equals the drag force. The drag coeffi-
cient is calculated based on Eötvös number as given in table 3.1.
When the terminal rise velocity is reached, the buoyancy force is equal to
the drag force hence the terminal rise velocity can be determined as:

vterminal =

(

8(ρl − ρb)Rbg

3CDρl

)1/2

=

(

4 (ρl − ρb)σg

ρ2
l

)1/4

(3.28)

Using ρl = 1000 kg/m3 , ρb = 1 kg/m3, g = 9.81 m/s2 and σ = 0.073 N/m we ob-
tain a terminal rise velocity of 0.2312 m/s. Note that by calculating the drag
coefficient using relation reported in table 3.1, the terminal rise velocity of
the bubble is independent of its size.
In the simulation, a bubble is released at the bottom of the column and
because of the buoyancy, the bubble will start to rise. Simulations were
conducted for bubble diameters of 4 and 10 mm, with computational cells of
5 and 10 mm.
The comparison between the analytical terminal rise velocity and the sim-
ulations are shown in Fig. 3.8. As we can see from this figure, the model
can reproduce the terminal rise velocity accurately. For the 10 mm bubble
however, the terminal rise velocity shows small wiggles. These (very small)
wiggles can be attributed to the mapping technique and occur when the bub-
ble crosses the face of a computational cell. The order of this wiggle however
is very small compared to the magnitude of the terminal rise velocity, thus
we can conclude that the proposed mapping method performs satisfactory
and can be used for further simulations.
Another simulation was performed to verify the time integration procedure
that has been implemented to track the bubble size as well as bubble mass
due to mass transfer. The verification was carried out by simulating the rise
of a single bubble with mass transfer. The mass transfer rate was set to
be constant by selecting the initial conditions of the species Y j

l , kl and Y j∗
l

in such a way that kl

(

Y j
l − Y j∗

l

)

= 4 · 10−6 m/s. With this arrangement, the
analytical solution of the bubble size becomes:

Rb(t) = kl

(

Y j
l − Y j∗

l

) ρl

ρb
t+Rb(0) (3.29)

A bubble with an initial diameter of 4 mm is released at the bottom of the
column. The bubble size is tracked in time and the result is compared with
the analytical solution. Fig. 3.9 shows the comparison of the analytical
solution and single bubble simulation with grid sizes of 5 and 10 mm. This
figure shows that the simulation results and the analytical solution practi-
cally coincide. These results verify that the time integration of the bubble
size is correctly implemented and can be used for further simulations.
As mentioned in the previous section, the terminal rise velocity is indepen-
dent of the bubble size. This fact can also be observed in Fig. 3.10. As can
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Figure 3.8: Single air bubble rise velocity in an initially quiescent column filled with
water. Several combinations of bubble and grid size as compared with the analytical
solution.

be seen from this figure, after the bubble reaches its terminal velocity, the
velocity remains constant, despite the fact that the bubble size is increasing.
When the bubble diameter exceeds the size of the computational cell, small
wiggles start to develop. However the order of these wiggles is again very
small and does not increase as the bubble size increases.

3.6 Results

In order to demonstrate the capabilities of the model four case studies are
presented in this section. The square bubble column introduced in section
3.4 is used as a base configuration. The hydrodynamics part of the model is
compared with PIV measurements of Deen et al. [4].

3.6.1 Hydrodynamics

In this case study, the hydrodynamics of an air-water system is investi-
gated. The gas-liquid flow in a square bubble column is simulated using the
hydrodynamic model as described in section 3.2.1 and 3.2.2. Air is injected
into an initially quiescent liquid as indicated in Fig. 3.11. Shortly after the
bubbles are released into the column, a bubble plume rises through the
column and creates a typical mushroom like shape. Due to the gas-liquid
momentum coupling, some motion is induced in the liquid phase, and after



72 ‖ � � 
 � � � ��� � ����� � � � � � � �

0 0.5 1 1.5
0

1

2

3

4

5

6

7

8
x 10

−3 Bubble radius vs time

Time [s]

B
ub

bl
e 

ra
di

us
 [m

]

Analytical solution
Simulation with grid 10 mm
Simulation with grid 5 mm
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results with two different grid size practically coincide with the analytical solution.

a while the entire bulk liquid starts to move. The first bubbles escape from
the column after 1.5 s simulations. After some time the motion inside the
bubble becomes unstable. Strong circulation patterns appear with up flow
in the center region and down flow in the corners of the column. Due to
the liquid down flow, some bubbles close to the wall are dragged downwards
to the lower region of the column before being dragged again to the column
surface by the upward flow.
The bubble plume is meandering in a random fashion. Using animation
representation of our simulation results as suggested by Delnoij et al. [8] we
can see that this meandering behavior is due to random formation of vor-
tices close to the column surface. The vortices generate strong down flow,
which pushes the bubbles near the inlet region to one side when they reach
the bottom of the column. The bubble plume will then move close to one side
of the column. This process is repeated, but the vortex formation appears
in another location, which will make the bubble plume move in another di-
rection.
A time history plot of the vertical liquid velocity at one point in the column
is shown in Fig. 3.12. As can be seen in this figure, the DBM simula-
tion is able to reveal the highly dynamic nature of the bubble column hy-
drodynamics. As compared to the experimental measurements using laser
Doppler anemometry (LDA) technique by Deen et al. [4], the DBM results are
in agreement for both time and velocity scales.
A more quantitative comparison with the experimental measurement is ob-
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tained through the long term (i.e. the statistical averaged) quantities. In the
present study the time-averaged mean velocity and velocity fluctuations of
the simulation are calculated during a 10 − 120 s interval. The mean velocity
is calculated as follow:

u =
1

Nt

Nt
∑

i=1

ui (3.30)

where Nt is the number of time steps used in the averaging.
The large scale velocity fluctuation is calculated as:

u′ =
1

Nt

√

√

√

√

Nt
∑

i=1

(ui − u)
2 (3.31)

The time averaged quantities are compared with the PIV measurements of
Deen et al. [4], who also conducted two fluid simulations of this column
with a two fluid model using the commercial CFD package CFX. Fig. 3.13
shows the profile of the average liquid velocity in the vertical direction while
the liquid phase vertical and horizontal velocity fluctuations can be seen in
Fig. 3.14. As can be seen in these figures, the simulation results show good
agreement with the experimental data. The average velocity profile gives a
maximum value in the center of the column and a negative value close to the
wall, which resembles a liquid flow pattern with liquid up-flow in the center
region of the column and down flow near the walls.
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Figure 3.11: Series of corresponding velocity fields and bubble position obtained from
simulation of air-water bubble column at different time after the air was switched
on. Gas superficial velocity= 4.9 mm/s.
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Figure 3.12: Time history of the vertical liquid velocity at the centreline of the column
and at a height of z/H = 0.56.

Compared to the PIV measurements, the DBM simulations generally slightly
overpredict the average and fluctuation velocities in the center region of the
column, while the two-fluid simulation shows the opposite tendency. The
vertical velocity fluctuations, measured with PIV, show a local minimum
in the middle, which is also predicted nicely in the DBM simulation. The
velocity fluctuations predicted by the two fluid model, however, do not show
this feature.

3.6.2 Mixing

The liquid velocity induced by the motion of the bubbles generates mixing
in the bubble column. The characteristics of the mixing is very important,
since it will determine the homogeneity of chemical species present in the
reactor. The mixing rate is normally determined by injecting a pulse of tracer
containing a specified amount of tracer and by monitoring tracer concentra-
tions within the reactor at single or multiple points [14].
In the present study, the mixing mechanism of the air-water bubble column
system is investigated immediately after bubbles are injected by making use
of three different tracers. The column is divided into three equal regions in
the vertical direction. Initially, only one tracer is present in each region as
can be seen in Fig. 3.15. The tracer is treated as a passive scalar, which is
described by Eq. 3.9, where the source terms are all set to zero.
Fig. 3.16 shows the mixing sequence immediately after bubbles are intro-
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Figure 3.13: Comparison of simulated and experimental profiles of the liquid vertical
average velocity (uz), at a height of z/H = 0.56 and a depth y/W = 0.5.

duced into the column. As can be seen, the tracers that are initially sep-
arated are pushed upward in the center region of column, because of the
bubble motion. This upward motion is balanced by downward motion close
to the column wall. The tracers, which come from the three regions then hit
the top and bottom part of the column. The vortices present in these regions
mix the tracers even further. The process is continued until all the tracer is
mixed evenly.
The mixing time is quantified by monitoring the mass fractions of the three
tracers at the centerline axis, at a height of z/H = 0.5 (see Fig. 3.17). As can
be seen from this figure, a homogeneous mixture is reached after 8 s. This
figure also shows that the mass fraction is bounded between 0 − 1 and the
sum of all species is conserved during the simulation.

3.6.3 Physical absorption

In this case study the physical absorption of CO2 in water is simulated. CO2

gas is fed into the column filled with water. A species transport equation
is utilized to track the mass fractions of CO2 in the liquid phase. Initially
there is no dissolved CO2 present in the column. During the process of the
physical absorption, a relatively low mass transfer rate is experienced by the
bubbles.
Fig. 3.18 shows the transient behavior in the column after the CO2 bubbles
are injected into the column. As can be seen, the hydrodynamics are rela-
tively similar to the air-water case as described in the previous test cases.
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Figure 3.15: Initial condition used for the mixing study. The column is divided into
three different regions. Only one species is initially present in each region.

The size of the bubbles is only slightly changed during their presence in the
column. A high fraction of dissolved CO2 can be found in the vicinity of the
bubbles. The dissolved CO2 is convected by the liquid to other parts of the
column.
The overall mass transfer rate can also be estimated by integrating eq. 3.14
over the entire column. In the case of no mass transfer enhancement, this
yields the following expression for the mean dissolved CO2 concentration in
the column at time t:

[CO2(aq)] (t)

H [CO2(g)]
= 1 − exp

−tNbklAb

Vl
(3.32)

with Nb the (averaged) total number of bubble and Vl the (averaged) liquid
volume of the column. The mass transfer coefficient kl is calculated using
the theoretical terminal rise velocity as explained in sect. 3.5 while the in-
terfacial area Ab is calculated by assuming constant bubble size.
According to eq. 3.32, the dissolved CO2 is accumulated exponentially in
time. The interphase mass transfer decreases as the dissolved CO2 concen-
tration increases and eventually diminished when the equilibrium condition
as prescribed by the Henry constant is reached.
Fig. 3.19 shows the concentration of CO2 at the centreline of the column, at
a height of z/H = 0.5 resulting from the DBM simulation compared with the
macro balance calculation given by eq. 3.32 within the time interval 0−500s.
As can be seen in this figure, the macro balance shows good agreement with
the DBM results. The discrepancy observed is less than 5%, which might
come from the fact that DBM employs the exact number of bubbles as well
as the bubbles and liquid properties in calculating the mass transfer, in con-
trast with the average value and constant size used in the macro balance



� � � � � 
 � � ��
 ‖ 79

t=1.09 [s]

0.3 [m/s]

t=3.17 [s]

0.3 [m/s]

t=5.29 [s]

0.3 [m/s]

Figure 3.16: Set of corresponding velocity fields (top), bubble position (middle) and
isosurface of 30% tracer mass fraction (bottom) obtained from simulation of air-
water bubble column with additional three passive scalar act as tracer at different
time after the air was switched on. Gas superficial velocity= 4.9 mm/s.
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Figure 3.17: Variation of the tracer during the mixing sequence at the centreline of
the column and at a height of z/H = 0.5.

model. Furthermore, in the macro balance model it is assumed that the
transferred components are ideally mixed in the liquid, which is in contrast
to the findings of the DBM.

3.6.4 Bubble column under reactive conditions

In this case study, we combine all the models described in section 3.2 to
obtain a complete, comprehensive model for a bubble column under reac-
tive conditions. The chemisorption of CO2 into aqueous NaOH solution is
chosen as a test case, since it accounts for important phenomena that are
encountered in practice.
The overall reaction mechanism of the chemisorption of carbon dioxide in an
aqueous solution of sodium hydroxide is well understood and the reaction
kinetics is well documented. The reaction sequence comprises several steps,
which are given below:

CO2(g) −→ CO2(aq) (3.33)

CO2(aq) +OH−

 HCO−

3 (3.34)

HCO−
3 +OH−


 CO2−
3 +H2O (3.35)

At high pH the second reaction is considered to be instantaneous. Thus in
the present study the overall reaction can be simplified into:

CO2(aq) + 2OH−

 CO2−

3 +H2O (3.36)
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Figure 3.18: Set of corresponding velocity fields (top), bubble position (middle) and
distribution of dissolved CO2 concentration [mol/l] (bottom) obtained from simulation
of the physical absorption of CO2 gas in water at various time after the CO2 gas was
switched on. CO2 gas superficial velocity= 4.9 mm/s.
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Figure 3.19: Normalized dissolved CO2 concentration at the centreline of the column
and at a height of z/H = 0.5 compared with macro balance model. Simulation re-
sult of physical absorption of CO2 bubbles in water. CO2 gas superficial velocity=
4.9 mm/s. Nb = 4643.

Since the first reaction is rate determining, the rate of the overall reaction is
taken from the first reaction. The forward and backward reaction rate can
respectively be formulated as:

R1,1 = k1,1 [CO2(aq)]
[

OH−
]

(3.37)

R1,2 = k1,2

[

HCO−
3

]

(3.38)

where k1,1 and k1,2 are the forward and backward reaction rate constants
respectively.
The influence of the chemical reaction on the gas absorption process is usu-
ally accounted for by an enhancement factor, E. This factor can be calcu-
lated numerically by solving the (coupled) diffusion equations in the bound-
ary layer surrounding the bubbles. The equations should be solved for each
individual bubble, hence in the case where a large number of bubbles is
present this method becomes impractical. In the present study, an approx-
imate solution of the enhancement factor is used. The enhancement factor
takes a simple algebraic form as a function of the Hatta number [29]:

E =

{

− Ha2

2(E∞−1) +
√

Ha4

4(E∞−1)2
+ E∞

Ha2

E∞−1 + 1 ; E∞ > 1

1 ; E∞ ≤ 1
(3.39)
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Figure 3.20: pH-dependence of the enhancement factor E determined using approxi-
mate relation compared with with the detailed simulation with the two-film model of
Fleischer et al. [9].

where

E∞ =

(

1 +
DOH− [OH−]

2DCO2
H [CO2 (g)]

)

√

DCO2

DOH−

(3.40)

Ha =

√

k1,1DCO2
[OH−]

kl
(3.41)

This approach provides a much cheaper solution for the enhancement
factor for each individual bubble. The variation of the enhancement factor,
E, for pH ranging from 7 to 14 can be seen in Fig. 3.20. As we can see the
physical mass transfer rate is significantly enhanced by the chemical
reaction at pH > 12. Compared to the detailed simulation result using
the two-film model by Fleischer et al. [9], the approximate relation can
represent the enhancement factor quite well. Small discrepancy is observed
at high pH range. However since this is only a test case to demonstrate
the capabilities of the Euler-Lagrange model, the approximate relation for
the enhancement factor given by eq. 3.39 is considered to be adequate to
describe the physical phenomena.
During the chemisorption process, due to the high interphase mass
transfer rate, it is possible that bubbles are completely dissolved in the
liquid. In our model a bubble is considered to be completely dissolved in the
liquid when the bubble radius is less than 1 µm, while the bubble growth
rate is negative (i.e. the bubble is still dissolving). If a bubble meets this
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Table 3.3: Initial conditions and source terms used in the species transport equations.

j Species Y
j

l
(t = 0) Sj/Mj

w

h

kmol

m3s

i

0 CO2(aq) 1 × 10−50 −R1,1 + R1,2

1 OH− Y1 (pH) 2 (−R1,1 + R1,2)

2 CO2−
3 1 × 10−50 R1,1 − R1,2

criterion, it will be disposed from the column and no longer being tracked.
The chemisorption problem is simulated using the DBM model. CO2 gas is
feed into the column filled with NaOH solution with an initial pH of 14.
Three species transport equation are utilized to track mass fractions of
CO2(aq), OH− and CO2−

3 . A summary of the initial conditions and the
source terms used in each transport equation is presented in Table 3.3.
Fig. 3.21 shows the transient behavior in the column immediately after
the CO2 bubbles are injected into the column. Shortly after bubbles
are released into the column, a typical mushroom like shape appears.
This shape is however, less pronounced compared to the case without
absorption as described in section 3.6.1. Due to the chemically enhanced
mass transfer, the bubbles are completely dissolved within 0.15 m from the
bottom and remain in that position for quite a while. Although the bubbles
only appear in the lower part of the column, the liquid circulation induced
by the bubbles extends to the top portion of the column. Compared to the
case without absorption, the liquid phase oscillation is only observed in the
higher part of the column. Since no bubbles are present in this region,
these oscillations do not interact with bubbles, which makes them less
pronounced.
Fig. 3.22 shows the transient behavior of chemical species distribution in
the column. Since bubbles are only present in the lower part of the column,
the mass transfer and reactions only take place close to the gas inlet. CO2

gas, which dissolves into the liquid from the bubbles immediately reacts
with hydroxide to produce carbonate, hence only very small traces of
dissolved CO2 can be found in the vicinity of the bubbles. The hydroxide
ions that have been consumed by the reaction as well as the newly formed
carbonate ions will be transported by the circulation flow to the top of the
column in the center region and return back again through the downflow
zone close to the column walls. This behavior suggests that the reactions
taking place in the bottom part of the column are always supplied with
relatively fresh reactant, since the product of the reaction is immediately
transported by the liquid flow.
With time, the pH is decreasing and the carbonate concentration is
continuously increasing. As the pH decreases, the enhancement factor,
as shown in Fig. 3.20, also decreases, resulting in a lower mass transfer
rate. In time the position where the bubbles are completely dissolved will
slowly move upward. This behavior has been experimentally observed by
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Figure 3.21: Set of corresponding velocity fields (top), bubble position (bottom) ob-
tained from simulation of the chemisorption of CO2 gas in liquid NaOH at various
time after the CO2 gas was switched on. Initial NaOH pH = 14, CO2 gas superficial
velocity= 4.9 mm/s.
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Figure 3.22: Set of corresponding dissolved CO2 concentration [mol/l] (top), CO2−
3 con-

centration [mol/l] (middle) and liquid phase pH [−] (bottom) obtained from simulation
of the chemisorption of CO2 gas in liquid NaOH at various time after the CO2 gas
was switched on. pH0 = 14; pure CO2 gas superficial velocity= 4.9 mm/s.
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Fleischer et al. [9]. To investigate whether our model is capable to predict
such behavior, a series of simulations with an initial pH varying from 13
up to 14 has been conducted. This technique is used to save calculation
time, since the rate of change of pH is very low. Fig. 3.23 shows that the
afore mentioned behavior is nicely predicted by the current model. As the
pH decreases the position where bubbles are completely dissolved moves
upward and since the model is also able to predict the decrease of pH in
time we can conclude that this behavior can also be captured if we would
proceed the simulation for a sufficiently long period.

3.7 Conclusions

A model that combines hydrodynamics, mass transfer and chemical reaction
in a bubble column has been successfully formulated and implemented. The
simulation results obtained shows that the model can be used to investigate
those phenomena in more detail than before.
Simulation of a single rising bubble in a quiescent liquid shows that the
model is able to predict the terminal rise velocity correctly. In combination
with a constant mass transfer rate, the model also accurately produces the
bubble size as a function of time.
The hydrodynamics model has been validated using the experimental data
of Deen et al. [4]. Both instantaneous and time-averaged liquid velocities
predicted by the model are in good agreement with the experimental data.
The experimentally observed meandering of the bubble plume is also nicely
predicted by the present model.
By combining the hydrodynamics and chemical species transport equations,
the mixing mechanism in the column can be studied in more detail. Our
simulations indicate that intense mixing prevails at regions where sudden
changes in flow direction occur.
One of the key features of the model presented in this chapter is its capabil-
ity to track individual bubbles in time. By calculating the mass transfer rate
for each individual bubble and combining this information with a chemical
species transport equation, gas absorption in reactive liquids can be de-
scribed.
In the case of the physical absorption of CO2 bubbles is water, it was found
that the distribution of dissolved CO2 is not uniform. Relatively high dis-
solved CO2 was found in the vicinity of bubbles. In time the dissolved CO2

is accumulated in the water until the equilibrium is attained. This behavior
shows good agreement compared with theoretical calculations.
The model was also used to investigate the chemisorption of CO2 gas in
NaOH solution. This process has been studied experimentally by Fleischer
et al. [9]. The model is able to reveal liquid phase hydrodynamics, bubble
size and position as well as chemical species distribution involves in the re-
action. In simulations with initial pH=14, bubbles are only present close to
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Figure 3.23: Snapshot of bubble position at time t = 10 s after the CO2 gas was
switched on with variation of initial liquid NaOH pH. CO2 gas superficial velocity=
4.9 mm/s.
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the gas inlet. Only very small traces of dissolved CO2 can be found in the
vicinity of the bubbles while the hydroxide ion that have been consumed and
newly formed carbonate ions is transported through all the column region.
In time the pH is decreasing while the carbonate ions is increasing. The
model is also able to predict the position of completely dissolved bubbles
due to chemically enhanced mass transfer. Variation of initial pH shows
that this position shifts upward in the column as the pH decreases.
Due to the complexity and detailed information that the present model pro-
vides, calculation time is still the bottleneck especially for problems which
involve a large number of bubbles and chemical species. In the current
work, coalescence and break up were not considered. However, appropriate
coalescence and break up models can readily be implemented due to the
lagrangian treatment of the bubble phase.
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Notation

A interfacial area, m2

C model coefficient, dimensionless
d diameter, m
D diffusivity m2 s−1, depth m
E enhancement factor, dimensionless
Eö Eötvös number, Eö = (ρl − ρb)gd

2
b/σ, dimensionless

F force vector, N
g gravity acceleration, m s−2

H Henry constant (aqueous-concentration / gas-concentration), dimension-
less

Ha Hatta number, dimensionless
k1,1 forward reaction rate constant, m3 kmol−1 s−1

k1,2 backward reaction rate constant, s−1

kl mass transfer coefficient, m s−1

I unit tensor, dimensionless
m mass, kg
ṁ mass transfer from individual bubble, kg s−1

Ṁ liquid side volume averaged mass transfer, kg s−1 m−3

Mw molecular weight, kg kmol−1

P pressure, N m−2

R radius m, reaction rate, kmol m−3 s−1
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Re Reynolds number, Re = ρl |v − u| db/µl, dimensionless
S source term in the species balance equation, kg m−3 s−1

S characteristic filtered strain rate, s−1

Sc Schmidt number, Sc = µl/ (ρlD), dimensionless
Sh Sherwood number, Sh = kldb/D, dimensionless
t time, s
u liquid velocity vector, m s−1

u liquid mean velocity, m s−1

u′ liquid velocity fluctuation vector, m s−1

v bubble velocity vector, m s−1

V volume, m3

W width, m
Y mass fraction, dimensionless
[.] concentration, kmol m−3

Greek letters

δb distance between two consecutive bubble, m
4 subgrid length scale, m
ε volume fraction, dimensionless
Γ species diffusion coefficient, m2 s−1

µ viscosity, kg m−1 s−1

ω lagrangian quantity
Ω eulerian quantity
Φ volume averaged momentum transfer due to interphase forces, N m−3

ρ density, kg m−3

σ interfacial tension, N m−1

τ stress tensor, N m−2

ζ volume fraction of a bubble included in a cell, dimensionless

Indices

aq aqueous
b bubble
cell computational cell
D drag
eff effective
G gravity
j jth species
l liquid
L lift
P pressure
s superficial
S subgrid
T turbulent
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VM virtual mass
∗ interfacial equilibrium value
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[19] S. Láin and M. Sommerfeld. LES of gas-liquid flow in a cylindrical
laboratory bubble column. Yokohama, Japan, May 30-June 4 2004.
5th International Conference on Multiphase Flow, ICMF’04. Paper No.
337.

[20] J. Smagorinsky. General circulation experiment with the primitive
equations. Monthly Weather Review, 91:99–165, 1963.

[21] R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena.
John Wiley and Sons, second edition, 2002.

[22] B. P. B. Hoomans, J. A. M. Kuipers, W. J. Briels, and W. P. M. Van
Swaaij. Discrete particle simulation of bubble and slug formation in a
two-dimensional gas-fluidised bed: A hard-sphere approach. Chemical
Engineering Science, 51(1):99–118, 1996.

[23] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford
Science Publications, 1987.

[24] J. Centrella and J. R. Wilson. Planar numerical cosmology. II. the differ-
ence equations and numerical tests. Astronomy & Astrophysics Journal
Supplement Series, 54:229–249, 1984.

[25] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. Knepley,



� � � � � �	� � � 
 ‖ 93

L. C. McInnes, B. F. Smith, and H. Zhang. PETSc home page.
http://www.mcs.anl.gov/petsc, 2001.

[26] J. H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics.
Springer, 1999.

[27] B. H. Hjertager. Computational fluid dynamics (CFD) analysis of mul-
tiphase chemical reactors. Trends in Chemical Engineering, 4:44–92,
1998.

[28] J. A. M. Kuipers, K. J. van Duin, F. P. H. van Beckum, and W. P. M. van
Swaaij. Computer simulation of the hydrodynamics of a two dimen-
sional gas-fluidized bed. Computational Chemical Engineering, 17:839,
1993.

[29] K. R. Westerterp, W. P. M. van Swaaij, and A. A. C. M. Beenackers.
Chemical Reactor Design and Operation. John Wiley & Sons, 1998.



94 ‖ � � 
 � � � ��� � ����� � � � � � � �



4
Chemisorption of CO2 in NaOH:

a numerical and experimental study§

”The meeting of two personalities is like the contact of two chem-
ical substances: if there is any reaction, both are transformed.” -
Carl Jung

Abstract

This chapter describes simulations that were performed with an
Euler-Lagrange model that takes into account mass transfer and chemical
reaction reported by Darmana et al. [3] (see chapter 3). The model is used to
simulate the reversible two-step reactions found in the chemisorption process
of CO2 in an aqueous NaOH solution in a lab-scale pseudo-2D bubble
column reactor. The computational results are compared with experimental
data of bubble velocities, which were obtained with the use of Particle Image
Velocimetry. Furthermore, the influence of the mass transfer and chemical
reaction on the hydrodynamics, bubble size distribution and gas hold-up is
also studied and compared with the experiment. It is found that the present
model is able to predict the entire reaction process. The prediction of the
hydrodynamics without mass transfer is found to be accurate. The model
however seems to underpredict the overall mass transfer process, which we
believe, can be attributed to the inaccuracy of the mass transfer closure being
used in the present study. Nevertheless, the trends of the influence of the
mass transfer rate on the hydrodynamics have been successfully captured
by the present model.

§Based on: Darmana et al. [1,2]
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4.1 Introduction

Bubble columns reactors constitute one of the most significant reactor types
for gas-liquid reactions. In order to improve the performance of this type of
reactor detailed information on fluid flow, mass transfer and chemical re-
action rates as well as the mutual interactions is crucial. However, due to
its complexity the bubble column reactor is not yet well understood despite
extensive research effort given in this area.
In the past decade, the reaction engineering community has been active in
exploring the possibilities to utilize Computational Fluid Dynamics (CFD) in
the modelling of multiphase reactors. However in most of the studies, mass
transfer and chemical reaction are ignored amongst others due to excessive
memory and computational power requirements. Research of multiphase
CFD thus mainly focused on the modelling of the hydrodynamics of the re-
actors and improving the closures required by the model to achieve a better
prediction of the hydrodynamics [4–10].
A few authors have tried to make a shortcut to the expensive CFD modelling
of the multiphase reactors by reducing the degree of complexity into a steady
state problem or solving the problem using a 1D or 2D model [11–13]. How-
ever, it has meanwhile become clear that the two-phase hydrodynamics of
bubble column reactors can only be simulated with sufficient accuracy if a
fully dynamic (transient) 3D model is used [4,6,10]. Hence steady state 1D
or even 2D modelling will not be sufficient to properly capture the necessary
details of the flow required to provide a basis for the incorporation of mass
transfer and chemical reaction.
By employing a so called hybrid method, some authors tried to solve the
problem by decoupling the interaction between hydrodynamics, mass trans-
fer, chemical reactions and solve each sub-problem with a separate model.
In those models, CFD is employed only for the hydrodynamic simulation,
while the chemical reactions are accounted for in a custom-build compart-
mental model [14–17]. Since these methods essentially offer a compromise
to cope with the necessity to get information on the mass transfer and chem-
ical reaction process and the prohibitively expensive direct CFD calculation,
it does not necessarily account for the interaction between hydrodynam-
ics, mass transfer and chemical reactions. For example, the method does
not incorporate back coupling from the mass transfer and chemical reac-
tion phenomena to the hydrodynamics. This means a.o., that a fixed mean
bubble size is used to calculate the specific surface area for mass transfer
calculation. Due to an incorrect bubble size, the CFD prediction of other
parameters needed in hybrid methods such as the integral gas hold-up and
the slip velocity would not be accurate either, which eventually will deteri-
orate the overall predictive capabilities of the model for accounting for the
mass transfer and chemical reaction process.
A full three-dimensional modelling, by accounting for all relevant phenom-
ena such as hydrodynamics, mass transfer and chemical reaction in a single
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model so far is only limited to a study of the effect of mass transfer on
hydrodynamics during a limited time interval [18]. Recently Darmana et
al. [3, 19] developed a method that can handle the hydrodynamics, mass
transfer and chemical reactions prevailing in a bubble column based on the
Euler-Lagrange model developed previously by Delnoij et al. [4,5] (see Chap-
ter 3). The authors demonstrated that the fully transient, three-dimensional
model is able to simulate a full process of CO2 absorption in water for a lab-
scale bubble column until saturation of the liquid prevails using a single
state-of-the-art personal computer. Furthermore, they also used the model
to simulate the chemisorption process of CO2 in an aqueous NaOH solu-
tion. However due to prohibitively long calculation time required to follow
the complete reaction progress, the simulations were only carried out for a
short time interval to get an impression of the effect of the reaction on the
bubble size and hydrodynamics.
Darmana et al. [20] proposed a new algorithm to solve the Euler-Lagrange
model in parallel (see chapter 5), which offers the possibility to perform
calculations in a fraction of the time required for a serial calculation. In
this chapter we use the new parallel algorithm to simulate a reversible two-
step reaction system encountered in the chemisorption process of CO2 gas
in aqueous sodium hydroxide (NaOH) solutions in a pseudo-2D lab-scale
bubble column reactor. Specifically we investigate the applicability of the
developed model to predict the full evolution of the hydrodynamics and all
of the chemical species involved in the reaction. The simulation is carried
out starting from a solution with a pH of 12.5 until pH ≈ 7. The influence of
the reaction process on the hydrodynamics behavior is studied by compar-
ing the simulation results with another simulation with the same geometry
without mass transfer and chemical reactions. Furthermore, to validate
the model the simulation results are compared with dedicated experimental
measurements.

4.2 Chemisorption reaction

The chemisorption of CO2 in aqueous alkaline solutions takes place via two
reactions. Before these reactions can take place, CO2 gas first has to absorb
in water physically:

CO2(g) → CO2(aq) (4.1)

The elementary reactions than proceed as follows:

CO2 (aq) +OH−
k1,1−−⇀↽−−
k1,2

HCO−
3 (4.2)

HCO−
3 +OH−

k2,1−−⇀↽−−
k2,2

CO2−
3 (4.3)
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where k1,1 and k1,2 respectively are the forward and backward rate constants
for the first reaction while k2,1 and k2,2 represent the forward and backward
rate constants for the second reaction. The reaction rates are consequently
written as follows:

R1,1 = k1,1 [CO2(aq)]
[

OH−
]

(4.4)

R1,2 = k1,2

[

HCO−
3

]

(4.5)

R2,1 = k2,1

[

HCO−
3

] [

OH−
]

(4.6)

R2,2 = k2,2

[

CO2−
3

]

(4.7)

The physico-chemical parameters that describe the chemisorption process
used in this study are given in Appendix A.

4.3 Experiments

4.3.1 Experimental setup

The experiments are carried out in a laboratory scale bubble column (see
Fig. 4.1). A pseudo-2D geometry is chosen to enable visualization of the flow
structures and permit the determination of the bubble size distribution. The
column has a width of 200 mm, depth of 30 mm and height of 1500 mm. The
front, back and both side walls are made of 10 mm thick glass plates, while
the top and bottom part are made of stainless steel. During the experiment
the column is filled with liquid up to a level of 1000 mm.
The bubbles are introduced into the column using a gas needle distributor
system to ensure uniform bubble size and gas flow rate following the work of
Harteveld et al. [21]. The gas phase is fed into the column via three different
channels, which are individually controlled by mass flow controllers. Each
channel is connected to a gas distributor, which is connected to seven gas
needles. The gas distributor system has a total of 21 needles located at the
center of the bottom plate of the column with a square pitch of 5 mm. At the
top part of the column a pH meter, temperature sensor and gas flow meter
are available to measure all relevant quantities during the experiment.
To investigate the influence of chemical reaction on the hydrodynamics, two
types of experiments were carried out: with and without reaction. For fur-
ther reference these cases are simply refer as E1 (experiment without re-
action) and E2 (experiment with reaction). For E1, twice distilled water is
used as the liquid phase, while pure nitrogen gas (N2) (purity ≥ 99.9 %vol) is
used as the gas phase. Furthermore for E2, a NaOH solution with an initial
pH of 12.5 is used as the liquid phase with pure CO2 (purity ≥ 99.7 %vol) as
the gas phase. The NaOH solution was prepared by mixing twice distilled
water with NaOH grains in a separate stirred tank. Both the column and
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Schematic representation of the experimental setup.

Photo of (part of) the experimental setup.

Figure 4.1: Experimental setup used in the present study.
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the stirred tank are completely isolated to prevent unwanted absorption of
CO2 from the atmosphere.
All experiments were carried out after the flow pattern was fully developed
marked by the presence of a bubble plume meandering in a periodic fashion.
For case E2 the experiment was started up by first using N2 gas until the
flow pattern was fully developed. The gas supply is then switched to CO2. A
new fully developed condition will be reached approximately 30s after the gas
supply was switched. This procedure was carried out during each start up
since each gas needle channel required fine tuning to produce the desired
(uniform) flow rate. The time needed for fine tuning is approximately 5 min,
which is of the same order of magnitude as the overall reaction process.

4.3.2 Particle image velocimetry (PIV)

The bubble velocity is measured by means of the Particle Image Velocimetry
(PIV). With PIV, the column is illuminated from behind to obtain high con-
trast images of shadows of the bubbles against a bright liquid background
(see Fig. 4.2). A high speed CMOS camera is then used to record images of
the bubbles in the illuminated column.
Two subsequent images of the flow, separated by a short time delay, ∆t, are
divided into small interrogation areas. The volume-averaged displacement
sD(x, t) of the bubble images between the interrogation areas in the first and
the second image is determined by means of a cross-correlation analysis.
When the interrogation areas contain a sufficient number of bubble images,
the cross-correlation consists of a dominant correlation peak embedded in a
background of noise peaks.
The location of the tall peak, referred to as the displacement-correlation
peak, corresponds to the bubble-image displacement. Provided that ∆t is
sufficiently small, the velocity in the interrogation area, v(x, t) is then deter-
mined by dividing the measurement displacement by the image magnifica-
tion M and the time delay:

v(x, t) =
sD(x, t)

M∆t
(4.8)

The PIV camera used in the present study is a LaVision ImagePro 1200 HS
camera equipped with a Nikkor 50 mm 1.8 AF lens capable of recording up
to 625 Hz at full frame resolution. The time delay ∆t is set to 5 ms while
the magnification factor is 1360 pix/m. A total of 2440 pairs of images with a
sampling frequency of 25 Hz, which corresponds to 97.6 s, is recorded in one
measurement. The images are processed using the PIV software developed
by Westerweel [22]. A 32 × 32 pix2 interrogation area was used for the cross-
correlation analysis in combination with a window shifting technique. A
post processing step is carried out afterwards using a median test to remove
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Figure 4.2: Schematic representation of the experimental setup for the bubble velocity
and size measurement.

spurious vectors. Finally for the entire set of pictures, an ensemble average
is calculated.

4.3.3 Integral gas hold-up and bubble size measurement

The integral gas hold-up, (εI), is determined by measuring the difference
between the height of the liquid level in the column with and without bubbles
as follows:

εI =
h− h0

h
(4.9)

where h and h0 respectively are the height of the liquid surface with and
without aeration.
The bubble size is measured by means of an image analysis technique. The
experimental setup for the bubble measurement is shown in Fig. 4.2. Se-
ries of bubble images are recorded with a CCD camera (Dalsa Motion Vision
CA-D6-0512W) with a resolution of 544 × 516 pix. To maximize the bubble
contrast, the column is illuminated from behind (as for the bubble velocity
measurement using PIV). The images are then analyzed offline by the Visi-
Size Solo software (AEA Technology, England).
The bubble measurement software uses an algorithm to identify and mea-
sure the bubble size based on the intensity map of the image. A gray scale
threshold is set to distinguish bubbles from the background liquid. The
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threshold value is obtained manually by evaluating a sample image inten-
sity histogram.
In order to identify the bubbles, the image is scanned from top to bottom,
identifying dark segments on each line and associating them with segments
from the previous line. When the bubble detection is completed, calculations
are performed on each bubble to determine its diameter based on two dif-
ferent definitions, namely the area diameter dA and the perimeter diameter
dP . These diameters are respectively calculated as:

dA =
1

M

√

4Apix

π
(4.10)

dP =
1

M

Ppix

π
(4.11)

with M , Apix and Ppix respectively are the magnification factor, the pixel area
and the pixel perimeter.
The ratio dA/dP measures the sphericity of the bubble with dA/dP = 1 re-
flecting a perfect circle. The VisiSize Solo software uses these parameters to
distinguish clusters from individual bubbles. In the present study a magni-
fication factor of 2350 pix/m is used, while a sphericity value of 0.675 is used
based on several data analysis, which pointed out that a large population of
bubbles has a sphericity between 0.675 and 0.75. Finally, the Sauter mean
diameter is determined as:

d32 =
Σnb

k=1d
3
k

Σnb

k=1d
2
k

(4.12)

4.3.4 pH measurement

To measure the amount of hydroxyl ions being consumed during the chemi-
sorption process, pH measurements were conducted. The pH electrode was
positioned in the center of the column top in such a way that the electrode
tip is 2 cm submerged. A pH glass electrode (Metrohm 6.0219.110) has been
used in combination with a Metrohm 691 pH meter. Before usage, the elec-
trodes were cleaned and filled with a 3 M KCl buffer solution and calibrated
with buffer solutions of pH 7, 9 and 13. The pH meter is connected to a
computer via NI-DAQ data acquisition software from National Instruments
where the pH evolution during the reaction is recorded in real time.

4.4 Discrete bubble model

A parallel version of the three-dimensional discrete bubble model (DBM) de-
veloped by Darmana et al. [3,19,20] (see chapter 3 and 5) is used to model
the pseudo-2D bubble column. The liquid phase hydrodynamics are repre-
sented by the volume-averaged Navier-Stokes equation while the motion of
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each individual bubble is tracked in a Lagrangian fashion. The interphase
mass transfer is calculated for each bubble using the surface renewal the-
ory, which takes into account chemically enhanced mass transfer through
the enhancement factor E. The spatial distributions of chemical species
residing in the liquid phase are computed from the (coupled) species con-
servation equations formulated in the Eulerian framework.

4.4.1 Bubble dynamics

The motion of each individual bubble is computed from the bubble mass
and momentum equations while accounting for bubble-bubble and bubble-
wall interactions via an encounter model similar in spirit to the model of
Hoomans et al. [23]. The liquid phase contributions are taken into account
by the interphase mass transfer rate ṁ and the net force ΣF experienced by
each individual bubble. For an incompressible bubble, the equations can be
written as:

ρb
dVb

dt
= ṁ`→b − ṁb→` (4.13)

ρbVb
dv

dt
= ΣF −

(

ρb
dVb

dt

)

v (4.14)

where ρb, Vb and v respectively represent the density, volume and velocity
of the bubble. The interphase mass transfer rate ṁ is calculated using a
method, which will be described in section 4.4.4. The net force acting on
each individual bubble is calculated by considering all the relevant fluid
dynamical forces and modelled via separate, uncoupled contributions origi-
nating from gravity, pressure, drag, lift, virtual mass and wall forces:

ΣF = FG + FP + FD + FL + FV M + FW (4.15)

Expressions for each of these forces used in the present study can be found
in Table 4.1. Note that the drag, lift and wall force closures used in the
present study are obtained from Tomiyama et al. [24,25]

4.4.2 Liquid phase hydrodynamics

The liquid phase hydrodynamics is represented by the volume-averaged
Navier-Stokes equation system, which consists of the continuity and
momentum equations. The presence of bubbles is reflected by the liquid
phase volume fraction ε`, the source term that accounts for the interphase
mass transfer Ṁ , and the interphase momentum transfer Φ :

∂

∂t
(ε`ρ`) + ∇ · ε`ρ`u =

(

Ṁb→` − Ṁ`→b

)

(4.16)
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Table 4.1: Overview of forces acting on bubble

Force Closure
FG = ρbVbg −
FP = −Vb∇P −
FD = − 1

2
CDρlπR2

b
|v − u| (v − u) CD = max

h

min
ˆ

16
Re

`

1 + 0.15Re0.687
´

, 48
Re

˜

, 8
3

Eö
Eö+4

i

FL = −CLρ`Vb (v − u) ×∇× u CL =

8

<

:

min [0.288tanh (0.121Re) , f(Eöd)] ; Eöd < 4
f(Eöd); 4 < Eöd ≤ 10
−0.29; Eöd > 10

f(Eöd) = 0.00105Eö3
d − 0.0159Eö2

d − 0.0204Eöd +0.474

Eöd = Eö
E2/3

; E = 1
1+0.163Eö0.757

FV M = −CV Mρ`Vb

“

Dbv

Dbt
− Dbu

Dbt

”

CV M = 0.5

FW = CW Rbρ`
1

D2
bw

|u − v|2 · n CW =



e(−0.933Eo+0.179) 1 < Eo < 5
0.0007Eo + 0.04 Eo ≥ 5

∂

∂t
(ε`ρ`u) + ∇ · ε`ρ`uu = −ε`∇P −∇ · ε`τ` + ε`ρ`g + Φ (4.17)

where g is the gravity constant, ρ`, u and P respectively the density, velocity
and pressure for the liquid phase. Both phases are assumed to be incom-
pressible, which is a reasonable assumption considering the limited height
of the simulated systems. The liquid phase stress tensor τ` is assumed to
obey the general Newtonian form given by:

τ` = −µeff,`

[

(

(∇u) + (∇u)
T
)

− 2

3
I (∇ · u)

]

(4.18)

where µeff,` is the effective viscosity. In the present model the effective vis-
cosity is composed of two contributions, the molecular viscosity and the
turbulent viscosity:

µeff,` = µL,` + µT,` (4.19)

where the turbulent viscosity µT,` is calculated using the sub-grid scale
(SGS) model of Vreman [26]:

µT,` = 2.5ρ`C
2
S

√

Bβ

αijαij
(4.20)

where Cs is a model constant with a typical value of 0.1, αij = ∂uj/∂xi,
βij = ∆2

mαmiαmj and Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23. ∆i is the

filter width in the i direction.
It was decided to use the turbulent model proposed by Vreman rather than
the standard Smagorinsky model introduced in Chapter 3, as it inherently
accounts for reduced energy dissipation in near-wall regions. In case of a
pseudo-2D column, the entire column can be considered to be a near-wall
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region. It was found that the model of Vreman outperforms the Smagorinsky
model in this case.

4.4.3 Chemical species

The fraction of a chemical species j in the liquid mixture is represented by
mass fraction Y j

` . The presence of various chemical species is accounted
for through a transport equation for each species given by:

∂

∂t

(

ε`ρ`Y
j
`

)

+ ∇ ·
(

ε`

(

ρ`uY
j
` − Γj

eff∇Y
j
`

))

=
(

Ṁ j
b→` − Ṁ j

`→b

)

+ ε`S
j (4.21)

where Sj is the source term accounting for production or consumption of
species j due to homogenous chemical reactions and Γj

eff a transport coeffi-
cient defined by:

Γj
eff =

µeff,`

Scj
(4.22)

where Scj is the Schmidt number of species j defined as:

Scj =
µL,`

ρ`Dj
(4.23)

where Dj is the diffusivity of species j.
Changes in temperature as a result of the chemical reactions are not in-
cluded in the current model, since no changes in the recorded temperature
were observed during the experiment starting with pH= 12.5. Furthermore
by using the method presented by Vas Bath [27], temperature rise at the
bubble interface due to absorption and reaction during the residence time
of 10 s is estimated around 0.07 K which confirms that the influence of tem-
perature during the reaction can safely be ruled out.

4.4.4 Mass transfer

The interphase mass transfer of a bubble with radius Rb is considered to be
driven by the mass fraction gradient. The mass fraction of a chemical species
j in the liquid bulk and bubble are represented by Y j

` and Y j
b respectively,

while the value of both quantities at each side of the bubble-liquid interface
is given by Y j∗

` and Y j∗
b .

The mass transfer rate of a bubble due to a mass fraction gradient of species
j is represented as:

ṁj
b = Ekj

lAbρ`

(

Y j∗
` − Y j

l

)

(4.24)

where E is the mass transfer enhancement factor due to chemical reactions,
Ab is the interfacial area of the bubble and kj

l is the mass transfer coefficient
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for chemical species j.
The mass fraction on the liquid side of the interface can be determined using
Henry’s law:

Y j∗
l = HjY j∗

b

ρb

ρ`
(4.25)

where Hj is the Henry constant for species j.
The mass transfer enhancement factor can be calculated numerically by
solving the (coupled) diffusion equations in the boundary layer surround-
ing the bubbles. The coupled diffusion equations should be solved for each
individual bubble; hence, in the case where a large number of bubbles are
present, this method becomes impractical. In the present study, an approx-
imate solution for the enhancement factor, in the form of a simple algebraic
equation as a function of Hatta number, is therefore used instead (see Ap-
pendix A.4).

4.5 Simulations

Both of the E1 and E2 cases explained in section 4.3 are modeled using the
DBM which we refer to as case S1 and S2 respectively. The applied compu-
tational grid consists of 80 × 12 × 400 cells and the time steps, (δtflow, δtspec)
are set to 1 × 10−3 s while for bubble tracking (δtbub) a time step of 1 × 10−4 s
is used. The bubbles are introduced into the column at 21 positions accord-
ing to the geometry of the experimental setup using an initial bubble size of
5.5 mm. The boundary conditions are imposed using the flag matrix concept
of Kuipers et al. [28] as is shown in Fig. 4.3. The definition of each boundary
condition is given in Table 4.2.
To ensure that the simulations have exactly the same initial condition with
respect to the hydrodynamics, case S2 was started from the solution of case
S1 at t = 10 s. Five species transport equations are used to compute the
mass fractions of CO2(aq), OH−, HCO−

3 , CO2−
3 and H2O as the background

species. The initial mass fraction of each species involved in the reactions
was set to 1× 10−50 except for OH− which is computed from the initial pH of
12.5, and H2O which is calculated as:

YH2O = 1 −
(

YCO2
+ YOH− + YHCO−

3

+ YCO2−

3

)

(4.26)

The simulations were carried out in parallel using 16 processors on an in-
house Linux cluster (AMD opteron dual core 1.8GHz with 2GB of RAM for
each core). In general, the simulation with reaction required 24 h of calcula-
tion time for every 4 s simulation.
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Figure 4.3: Boundary conditions imposed in the discrete bubble model. The vertical
plane is at j = NY/2 while the slits are defined at k = NZ − 1.

Table 4.2: Cell flags and corresponding cell types used in defining boundary condi-
tions for the Navier-Stokes equations.

Flag Boundary conditions
1 Interior cell, no boundary conditions specified
2 Impermeable wall, free slip boundary
3 Impermeable wall, no slip boundary
4 Prescribed pressure cell, free slip boundary
5 Corner cell, no boundary conditions specified
6 Neumann boundary for species transport

`

∇Y j = 0
´

4.6 Results and discussion

In this section the results obtained from the DBM model will be presented
and compared with the experimental data. First, the overall reaction
progress will be given. Then the influence of the mass transfer and
chemical reaction on respectively the hydrodynamics, gas holdup, bubble
meandering behavior and averaged velocities will be addressed.
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4.6.1 Reaction progress

The chemisorption process is simulated using the DBM model (i.e. case S2).
Pure CO2 gas is fed at a superficial velocity of 7 × 10−3 m/s into the column
filled with a NaOH solution with an initial pH of 12.5. During their journey
from the gas inlet to the liquid surface, the bubbles will transfer some of
the CO2 gas to the liquid through the interphase mass transfer mechanism
which subsequently initiates the reversible two-step reactions as given in
Eqs. 4.2 and 4.3.
Figure 4.4 (top) shows the evolution of the species concentrations during
the chemisorption process predicted by DBM while Fig. 4.4 (bottom) shows
the corresponding pH evolution. In the beginning of the process, all the dis-
solved CO2 gas immediately reacts with hydroxide ions (OH−) and is con-
verted into carbonate (CO2−

3 ). Hence, only small traces of dissolved CO2

gas located near the bubbles are observed while the concentration of bicar-
bonate (HCO−

3 ) in the entire column is negligible. Figure 4.5 shows typical
snapshots resulting from DBM simulations for the chemisorption process at
this stage consisting of the bubble size (and positions), gas velocity, liquid
velocity field, and concentration field of the dissolved CO2 gas, hydroxide,
carbonate and bicarbonate. As can be seen from this figure, only a very
small amount of CO2 gas is found in the vicinity of the bubbles. The result-
ing reaction products are immediately transported by the convective flow
field to the entire region of the column. As all of the species are transported
with the same liquid velocity field, the concentration profiles of the hydrox-
ide, carbonate and bicarbonate are similar.
At about 80 s after the start of the reaction, the carbonate concentration
reaches a maximum and subsequently starts to decrease. Meanwhile, the
bicarbonate concentration starts to increase. This event is reflected in the
pH curve by a change in the slope, which is caused by the shift of equilib-
rium of the first reaction (Eq. 4.3) which happens around pH 11 in favor of
bicarbonate. After about 200 s, bicarbonate reaches the initial OH− concen-
tration while carbonate is almost entirely consumed. At this moment, the
first reaction (eq. 4.2) is shifted towards dissolved CO2 and another obvious
change in pH slope is observed, which happens around pH 7.5. After this
stage, the chemical reaction rates diminish and the dissolved CO2 gas starts
to accumulate in the entire column (see typical snapshots in Fig. 4.6).
By comparing the pH evolution predicted by the present model and the ex-
perimental measurement shown in Fig. 4.4 (bottom) we can conclude that
the present model is able to predict the chemical evolution quite well. Qual-
itatively speaking, the predicted pH evolution resulting from the present
model shows a similar trend and change in slope as observed in the exper-
iment. Quantitatively however, the pH evolution predicted by the present
model is somewhat lagging behind compared to the experimental one by
about 15%. We believe that it can be attributed to the inaccuracy in the
mass transfer correlation that is used in the present study, which under-
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Figure 4.7: Evolution of OH− concentration during the early stage of the reaction.
The slope is estimated using linear regression showing the rate of OH− consumption
which proportional with total mass transfer rate from all bubble to the liquid.

predicts the overall mass transfer rate.
To support this argument, the overall mass transfer rate for both simulation
and experimental data is compared. By assuming that the enhancement
correlation used in the present study is accurate (Westerterp et al. [29] sug-
gests an accuracy within 10%), we can estimate the total mass transfer rate
of CO2 gas from the rate of consumption of the hydroxide during the early
stages of the reaction. At this stage the dissolved CO2 immediately reacts
with OH− to produce carbonate; thus the rate of the CO2 gas transferred
to the liquid is proportional to the rate of OH− being consumed. Figure
4.7 shows the estimation of the mass transfer rate from the experimental
measurement (top) and simulation result (bottom). As can be seen, the total
mass transfer rate estimated by the present model underpredicts the exper-
imental data by about 14%, which is close to the time delay of the reaction
between the present model and experimental observation.

4.6.2 Flow structures

Some experimentally recorded images along with the corresponding instan-
taneous and time averaged gas velocity maps for case E1 and E2 are shown
in Fig. 4.8. As can be seen, the bubbles travel from the inlet to the top re-
gion in a snake-like motion. However, as the bubbles approach the column
surface, they move in the lateral direction. Several large vortical structures
are present in the column at any given time. The vortices are stacked in
the axial direction separated by the bubble plume. Some of the bubbles are
dragged along leaving the main bubble plume and are trapped in the vor-
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tices for some time until they rejoin the plume. The direction of the vortices
is clockwise when the the plume is on their left side or counter clockwise
otherwise. The vortices start to form close to the surface region in a alter-
nating fashion on each side of the column. The vortices are getting stronger
as they travel to about halfway the column and start to loose their energy as
they approach the column base until they finally disapear.
Using PIV, the bubbles velocities have been measured. The instantaneous
velocity maps clearly reveal the meandering behavior of the bubble plume
with high upward velocities present in the core of the bubble plume while
other bubbles move along with the vortices with a tendency to move down-
ward. The corresponding ensemble averaged bubble velocity map shows
different structures compared to the instantaneous ones. Here, the mean-
dering bubble behavior is no longer visible, instead the bubbles averaged
velocities display a uniform upward profile with the central region showing
higher velocities than the wall region.
A variation in flow structures is observed in case E2. Here due to (chemically
enhanced) mass transfer, the bubble size rapidly decreases as the bubbles
ascend toward the liquid surface. Bubbles that are trapped in the vortices
have a longer residence time compared to those that travel in the core of the
plume. This makes that the bubbles in the vortices have even smaller sizes
and for some bubbles the contact time is long enough to achieve complete
absorption.
The mass transfer also affects the rise velocity of the bubbles. From the
instantaneous bubble velocities we can clearly see that compared to case
E1 where bubbles are rising at relatively constant velocities, in case E2 the
bubble rise velocities are initially high after leaving the inlet and gradually
slow down as the bubbles approach the liquid surface. The correspond-
ing ensemble averaged bubbles velocities show a similar pattern where the
velocities are significantly lower compared to case E1. Furthermore the av-
eraged velocity profiles are slightly different; here the upward velocity in the
middle of the column is less pronounced compared to case E1.
As the reaction continues, the mass transfer rate from the bubbles to the
liquid is decreasing. The bubble size distribution along with the bubble rise
velocity gradually increases again. At the end of the reaction, similar flow
fields like in case E1 are observed. If we continue the process until the liq-
uid is saturated with dissolved CO2, bubble coalescence starts to take place
producing big bubbles with an observed diameter up to 2 cm. In this situ-
ation the bubble column regime has transformed from the homogeneous to
the heterogeneous regime.
Fig. 4.9 shows the instantaneous simulation results for case S1. Nitrogen
gas at a superficial velocity of 7×10−3m/s was injected into initially quiescent
water. Shortly after the bubbles are introduced into the column, a bubble
plume rises through the column and forms a typical mushroom like shape.
The motion of the bubbles induces the bulk liquid to move in the upward
direction at the center of the column and in the downward direction close
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Figure 4.9: Series of snapshots showing bubble position (left), liquid velocity (center)
and gas velocity (right) obtained from case S1. The first row shows the structures
during the startup period while the second row shows the flow structures that are
half a bubble plume meandering period apart. The velocity plots are in the plane of
y/D = 0.5.



116 ‖ � � � � � 
 � � � ��� ��� ���
CO2

� �
NaOH

Figure 4.10: Series of snapshots showing bubble position (left), liquid velocity (cen-
ter) and gas velocity (right) obtained from simulation case S2. The time difference
between the two snapshots corresponds to half a bubble plume meandering period.
The velocity plots are in the plane of y/D = 0.5.

to the sidewalls. The liquid motion interacts with the bubbles and thereby
disturbs the movement of the bubble plume.
The interaction between liquid and bubbles eventually results in a mean-
dering bubble plume that moves periodically and multiple vortices stacked
in the vertical direction of the column are developed. Just like in case E1,
these vortices are generated close to the liquid surface alternatingly on each
side of the column and move downward until they disappear near the bot-
tom of the column. Bubbles are mainly moving in the core of the plume,
however some of the bubbles are randomly trapped in the liquid vortices for
quite some time until they are dragged back to the core of the plume. Com-
paring with the snapshots obtained from the experiment, we can conclude
that the flow structures obtained from the simulations resemble the experi-
mental observation very well.
Fig. 4.10 shows the instantaneous solution of case S2 during the early stage
of the reaction process. As can be seen, the flow structures for the simula-
tion with mass transfer and chemical reaction are similar to the case S1 (and
also E1). Just like in the Case E2, the bubbles in case S2 also show a bub-
ble sizes reduction due to the (chemically enhanced) mass transfer where
bubbles at the top region are relatively smaller in size compared to the inlet
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region. Furthermore, bubbles that are trapped in the vortices are smaller
than those that move in the bubble plume core. Comparison with case E2
however, reveals a discrepancy in the bubble size distribution predicted by
the model. The bubbles in the top region of the column seem to be bigger
than the ones observed in the experiment.

4.6.3 Bubble sizes and Integral gas holdup

In the present model the size change for each bubble due to the mass trans-
fer process can be tracked. By mapping the bubble size to a Eulerian grid
we can investigate the spatial distribution of the bubble sizes. Figure 4.11
shows a typical instantaneous bubble size distribution and the correspond-
ing bubble size map in the Eulerian frame. As can be seen from the figure,
the bubble size is decreasing as a function of distance from the distribu-
tor. Furthermore we can also notice that the bubbles trapped in the vortices
are significantly smaller compared to the ones inside the core of the bubble
plume as has been observed in the experiment.
A more qualitative comparison between simulation results and experimen-
tal data is shown in Fig. 4.12. Here we can clearly see that the Sauter
mean diameter resulting from the present model is decreasing with distance
from the gas distributor. In the measurement, the bubbles are moving very
closely up to the height of z/H ≈ 0.4. The bubble size measurement for
this region therefore becomes less reliable as most of bubbles are identi-
fied as clusters and thereby being rejected, resulting in a mean bubble size
much smaller than it should be. However above z/H = 0.4 the measured
bubble size is more reliable. Comparison between simulations and exper-
imental data clearly shows that the present model overpredicts the bubble
sizes. Furthermore, the slope of the bubble size reveals that the present
model underpredicts the mass transfer rate compared to the experimental
measurement.
Comparison of the integral gas holdup between the experimental measure-
ment and prediction by the present model is shown in Table 4.3. As can be
seen, the integral gas holdup is reduced when mass transfer is taken into ac-
count. The reduction is a direct consequence of the decrease in bubble vol-
ume resulting from the mass transfer. Hence, for higher mass transfer rate,
the bubble volume is smaller and consequently the gas holdup. Compari-
son between simulation results and experimental measurement data shows
that in the case without reaction, the present model is able to predict the gas
holdup quite accurately. However when mass transfer is taken into account,
the gas holdup is overpredicted, which is consistent with the overprediction
of the bubble size distribution.
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Figure 4.11: Instantaneous bubble sizes distribution for case S2 (in mm), 19.4 s after
the reactions begin; gas holdup=1.6%.
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Table 4.3: Integral gas holdup, comparison between experiment and simulations
Case Experiment (%) Simulation (%)
1 2.3 2.2
2 1.2 1.6

4.6.4 Bubble plume dynamics

The meandering behavior of the bubble plume is an important characteristic
of a partially aerated pseudo-2D bubble column. This behavior however is
difficult to reproduce in a numerical simulation and has become one of the
key validation steps for a multiphase CFD model. In the previous section we
have shown that the simulations indicate the existance of alternating vor-
tical structures which are produced periodically, which induces the bubble
plume meandering behavior. In this section this behavior will be quantified
and compared with experimental data.
A time series of experimentally determined bubble velocity is presented in
Fig. 4.13. The periodic meandering behavior is clearly visible. By comparing
case E1 and E2 it is obvious that due to the mass transfer, the meander-
ing period has become longer. Using Fast Fourier Transformations (FFT) we
found that the meandering period for case E1 and E2 respectively amount
5.8 s and 10.2 s.
The periodic meandering behavior is reproduced nicely by the present nu-



120 ‖ � � � � � 
 � � � ��� ��� ���
CO2

� �
NaOH

0 10 20 30 40 50
−0.4

0

0.4

0.8

t [s]

v z [m
/s

]

0 10 20 30 40 50
−0.4

0

0.4

0.8

t [s]

v z [m
/s

]

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

frequency [Hz]

po
w

er
 [m

2 /s
2 ]

 

 
E1
E2

f=0.17 Hz

f=0.10 Hz

Figure 4.13: Time history of the axial bubble velocity at x/W = 0.25; y/D = 0.5; z/L =
0.5 for case E1 (top) and E2 (middle). Bottom figure: the corresponding frequency
domain for both cases showing the meandering frequency.



� � � � � 
 � � ��
 � � � � � 
 � � 
 
 � ��� ‖ 121

0 10 20 30 40 50
−0.5

0

0.5

t [s]

u z [m
/s

]

0 10 20 30 40 50
−0.5

0

0.5

t [s]

u z [m
/s

]

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

frequency [Hz]

po
w

er
 [m

2 /s
2 ]

 

 
S1
S2f=0.15 Hz

f=0.17 Hz

Figure 4.14: Time history of the axial liquid velocity at x/W = 0.25; y/D = 0.5; z/L = 0.5
for case S1 (top) and S2 (middle). Bottom figure: the corresponding frequency domain
for both cases showing the meandering frequency.



122 ‖ � � � � � 
 � � � ��� ��� ���
CO2

� �
NaOH

merical simulations as can be seen in Fig. 4.14. Here we found that for
case S1 and S2 the meandering period respectively are 5.8 s and 6.8 s. Note
that the period for case E1 and S1 is exactly the same which shows that the
dynamic behavior for the case without mass transfer has been successfully
captured. Just like in the experimental observation, the meandering period
predicted by the simulation also decreases when the mass transfer is taken
into account. However, here the period of case S2 is underestimated.
Buwa and Ranade [30] and Buwa et al. [7] investigated the influence of gas
superficial velocities to the meandering period, they found that the meander-
ing period is increased as the superficial gas velocity decreased. When mass
transfer from bubbles to the liquid is accounted for, the effective superficial
velocity is reduced. Thus, one can expect that the meandering period will
increase as the mass transfer rate increases. In our case the underpredic-
tion of the meandering period can be related to the underprediction of the
overall mass transfer rate.

4.6.5 Average velocity profile

Further quantitative comparison with the experimental data is carried out
through the long term (i.e. the statistical averaged) quantities. In the present
study the time-averaged mean velocity and velocity fluctuations of the simu-
lation are calculated during a t = 20− 80 s interval and a t = 20− 95 s interval.
The mean velocity is calculated as follows:

u =
1

Nt

Nt
∑

i=1

ui (4.27)

where Nt is the number of time steps used in the averaging.
The time-averaged mean bubble and liquid velocities profile as well as gas
holdup for case S1 and S2 can be seen respectively in Figs. 4.15 and 4.16.
As can be seen, the time-averaged quantities are completely different com-
pared to the instantaneous data. The meandering flow profile has completely
dissappeared and is replaced by a typical circulation pattern where the flow
is going up in the center region of the column and going down near the walls.
The averaged bubble velocity profile reveals that on average the bubbles are
moving up in the entire column. However, the averaged bubble velocities are
significantly higher in the center region of the column and lower close to the
walls. The time-averaged gas holdup shows that statistically the bubbles are
present in the entire top region of the column (i.e. at z/H > 0.3) while for the
lower part of the column, the bubbles are more concentrated towards the
central region of the column. In case S2, a similar situation is found. How-
ever, here the averaged bubbles velocities is more uniform (i.e. the bubble
velocities in the middle are less dominant in comparison with case S1).
The comparison of the time-averaged velocity profiles is shown in Fig. 4.17.
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Figure 4.15: Time-averaged liquid velocity (left), bubble velocity (center) and gas poros-
ity (right) at y/D = 0.5. Case S1, averaging was carried out from t = 20 − 80 s
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Figure 4.16: Time-averaged liquid velocity (left), bubble velocity (center) and gas poros-
ity (right) at y/D = 0.5. Case S2, averaging was carried out from t = 20 − 95 s
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Figure 4.17: Time-averaged bubble velocity profile (top) and time-averaged liquid ve-
locity profile (bottom) at z/H = 0.75.
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Figure 4.18: Time-averaged gas porosity profile at z/H = 0.75.

As can be seen, in the case without mass transfer, the bubble liquid velocity
profile predicted by the present model (case S1) matches nicely with the ex-
perimental data (case E1). A very mild overprediction in the bubble velocity
is observed in the center region of the column. For both the experimental
data and simulation, the averaged bubble velocity is decreased when mass
transfer is taken into account. Comparison between case S2 and E2 reveals
that the averaged velocity profile predicted by the present model is slightly
too high in the center region of the column.
The averaged liquid velocity profile shows similar trends with the averaged
bubble counterpart. The profile shows that the liquid velocity has maximum
upflow in the center of the column while downflow velocities is observed
close to the wall region. Just like with the bubble velocity, the mass trans-
fer also decreases the liquid velocities. Comparison between the liquid and
bubble velocity profiles infers that the slip velocity is approximately constant
in the lateral direction with a value of about 0.2 m/s.
The averaged gas holdup profile at z/H = 0.75 can be seen in Fig. 4.18. It is
found that the profile is symmetric in the lateral direction with a maximum
value in the center of the column. This reflects that on a time-averaged ba-
sis, more bubbles are traveling in the central area of the column then in the
wall region. Furthermore, the mass transfer also decreases the averaged gas
holdup profile.
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4.7 Conclusions

Detailed modeling results for a chemisorption process in a thin (pseudo-
2D) bubble column reactor have been presented. Our model is based on
the Euler-Lagrange approach and combines hydrodynamics, mass transfer
and chemical reaction. The model results have been compared with exper-
imental data and revealed close similarity between the computational and
experimental results: a bubble plume with periodic meandering between
the side walls of the column. A quantitative comparison in terms of aver-
aged velocities, meandering period and gas holdup shows that for the case
without mass transfer taken into account, the present model is able to cap-
ture all of the detailed characteristics accurately. When the mass transfer
is taken into account however, we found that the overall mass transfer rate
is lower compared to its experimental counterpart, which we believe can be
attributed to innaccuracy of the mass transfer closure used in the present
study. In this case the average bubble size predicted by the present model
is higher than found experimentally, which leads to a higher gas hold up,
higher flow field velocities and shorter meandering period compared to the
experimental data. Nevertheless, the trends of the influence of mass trans-
fer on the detailed characteristics mentioned above agrees very well with the
experimental investigation. It is worth to mention here that the closure for
the mass transfer is not as mature as the closures used for the hydrody-
namics. However we are confident that when a more accurate closure for
the mass transfer is available, the present model will give a closer compari-
son with the experimental investigation as has been shown here for the case
without mass transfer. For this purpose, the front tracking model developed
in Chapter 2 can lead to a promising computational tools to obtain a more
reliable closures of both hydrodynamics and mass transfer that can be used
in the discrete bubble model.
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Notation

A interfacial area, m2

ci concentration of species i, kmol m−3

C model coefficient, dimensionless
d diameter, m
D diffusivity, m2 s−1, depth, m
E enhancement factor, dimensionless
E∞ enhancement factor at infinity, dimensionless
Eö Eötvös number, dimensionless
F force vector, N
g gravity acceleration, m s−2

H Henry constant (aqueous-concentration / gas-concentration), di-
mensionless

Ha Hatta number, dimensionless
I ionic concentration, kmol m−3

ksub,1 reaction rate constant, sub: reaction number, forward,
m3 kmol−1 s−1

ksub,2 reaction rate constant, sub: reaction number, backward, s−1

kl mass transfer transfer coefficient, m s−1

K1 equilibrium constant for reaction 1, kmol−1 m3

K2 equilibrium constant for reaction 2, kmol−1 m3

Kw solubility product, kmol3 m−6

I unit tensor, dimensionless
M magnification factor, pix m−1

ṁ mass transfer from individual bubble, kg s−1

Ṁ liquid side volume averaged mass transfer, kg s−1 m−3

P pressure, N m−2

R radius, m
Re Reynolds number, dimensionless
S source term in the species balance equation, kg m−3 s−1

S characteristic filtered strain rate, s−1

Sc Schmidt number, dimensionless
Sh Sherwood number, dimensionless
t time, s
T temperature, K
u liquid velocity vector, m s−1

v bubble velocity vector, m s−1

V volume, m3

Y mass fraction, dimensionless
z ionic charge, dimensionless
[. . . ] concentration, kmol m−3
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Greek letters

4 subgrid length scale, m
ε volume fraction, dimensionless
Γ species diffusion coefficient, m2 s−1

µ viscosity, kg m−1 s−1

Φ volume averaged momentum transfer due to interphase forces,
N m−3

ρ density, kg m−3

σ interfacial tension, N m−1

τ stress tensor, N m−2

Indices

aq aqueous
b bubble
cell computational cell
D drag
eff effective
G gravity
j jth species
` liquid
L lift
P pressure
S subgrid
T turbulent
VM virtual mass
W wall
∗ interfacial equilibrium value

Appendix A: Physico-chemical parameters

A.1 Solubility

The solubility of CO2 in aqueous electrolytic solutions was estimated using
the method presented by Weisenberger and Schumpe [31]:

log

(

Hw

H

)

= Σ(hi + hg) ci (A.1)

where the solubility coefficient of CO2 in pure water, Hw, was taken from
Versteeg and van Swaaij [32] as:

Hw = 3.59 × 10−7 RT exp

(

2044

T

)

(A.2)
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The expression for the solubility is valid at 298 K but can be used without
loss of accuracy in a temperature range of 293 − 303 K.

A.2 Diffusivity

The diffusivity of CO2 in pure water, Dw,CO2
was taken from Versteeg and

van Swaaij [32]:

Dw,CO2
= 2.35 × 10−6exp

(−2119

T

)

(A.3)

The diffusion coefficients of gases into aqueous electrolyte solutions were
estimated by the method suggested by Ratcliff and Holdcroft [33]:

D

Dw
= 1 − 1.29 × 10−4

[

OH−
]

(A.4)

A.3 Mass transfer rate

The mass transfer rate is determined using the following Sherwood relation
[34]:

Sh =
kj

l db

Dj
= 2 + 0.015Re0.89Sc0.7 (A.5)

where db and Re are the diameter and Reynolds number of the bubble re-
spectively. The correlation is derived for non-spherical bubbles by taking
into account the stochastic deformations of the interface induced by turbu-
lent motion in the surrounding fluid.
With this Sherwood relation, using a typical Schmidt number of 462 and a
Reynolds number of 1100, one finds a typical Sherwood number of 562.

A.4 Enhancement factor

The enhancement factor is calculated using the relation given by Westerterp
et al. [29]:

E =

{

− Ha2

2(E∞−1) +
√

Ha4

4(E∞−1)2
+ E∞

Ha2

E∞−1 + 1 ; E∞ > 1

1 ; E∞ ≤ 1
(A.6)

Table A.1: Parameters suggested by Weisenberger and Schumpe [31] for Eq. A.1

Ion hi (m3kmol−1) Gas hg (m3kmol−1)
Na+ 0.1171 CO2 −0.0183
OH− 0.756

HCO−
3 0.1372

CO2−
3 0.1666
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where

E∞ =

(

1 +
DOH− [OH−]

2DCO2
H [CO2 (g)]

)

√

DCO2

DOH−

(A.7)

Ha =

√

k1,1DCO2
[OH−]

kl
(A.8)

This approximate enhancement factor has an accuracy within 10% and pro-
vides a relatively cheap solution for the calculation of the enhancement fac-
tor for each individual bubble.

A.5 Reaction rate

First reaction

The forward rate constant k1,1 (m3 kmol−1 s−1) of reaction 4.2 is calculated
via the relation presented by Pohorecki and Moniuk [35] as:

log

(

k1,1

k∞1,1

)

= 0.221I − 0.016I2 (A.9)

where the reaction rate constant at infinitely diluted solution, k∞1,1

(m3 kmol−1 s−1), is given by:

log k∞1,1 = 11.895 − 2382

T
(A.10)

This equation is valid in the temperature range of 291 − 314 K.
The ionic strength, I, is calculated as:

I =
1

2

(

[

Na+
]

z2
Na+ +

[

OH−
]

z2
OH− +

[

HCO−
3

]

z2
HCO1

3

+
[

CO2−
3

]

z2
CO2−

3

)

(A.11)

The backward rate constant k1,2 (s−1) is calculated via the equilibrium con-
stant K3 and Kw , and is derived for the following reaction:

CO2 +H2O 
 HCO−
3 +H+ (A.12)

H+ +OH−

 H2O (A.13)

with K3 (kmol m−3) is calculated according to Edwards et al. [36]:

K3 =

[

HCO−
3

]

[H+]

[CO2]
= exp

(−12092.1

T
− 36.786 ln(T ) + 235.482

)

(A.14)

and the solubility product, Kw (kmol2 m−6), was taken from Tsonopolous et
al. [37]:

Kw =
[

H+
] [

OH−
]

= 10−(5839.5/T+22.4773 log(T )−61.2062) (A.15)

The backward reaction k1,2 is then obtained using the following relation:

K1 =
k1,1

k1,2
=
K3

Kw
(A.16)
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Second reaction

Since the second reaction involves a proton transfer, it is very rapid. Eigen
[38] determined the rates of reactions involving protons or hydroxyl ions
in aqueous solutions to be in the order of 1010 − 1011 m3 kmol−1 s−1. The
backward reaction rate k2,2 (s−1) is calculated using the equilibrium constant
K2 (m3 kmol−1) as suggested by Hikita et al. [39]:

K2 =
k2,1

k2,2
(A.17)

with

logK2 = logK∞
2 +

1.01
√

[Na+]

1 + 1.27
√

[Na+]
+ 0.125

[

Na+
]

(A.18)

logK∞
2 =

1568.94

T
+ 0.4134 − 0.00673T (A.19)

Remark: In the discrete bubble model, a value of k2,1 of 106 m3 kmol−1 s−1 is
used to allow simulations to be performed with a larger time step. Several
precalculations have been performed to test this assumption and it is found
that using this value the second forward reaction is still much faster than
the first forward reaction. At the end of the simulation the difference in the
concentrations using the two value of k2,1 is 0.0273% which confirms that
using a smaller value for k2,1 does not yield any significant errors.
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[13] M. A. Márquez, A. E. Sáez, R. G. Carbonell, and G. W. Roberts. Coupling
of hydrodynamics and chemical reaction in gas-lift reactors. AIChE
Journal, 45(2):410–423, 1999.

[14] M. Bauer and G. Eigenberger. A concept for multi-scale modeling
of bubble columns and loop reactors. Chemical Engineering Science,
54:5109–5117, 1999.

[15] M. Bauer. On the multiscale modeling of bubble column reactors. PhD
thesis, University of Stuttgart, Germany, 2001.

[16] M. Bauer and G. Eigenberger. Multiscale modeling of hydrodynamics,
mass transfer and reaction in bubble column reactors. Chemical Engi-
neering Science, 56:1067–1074, 2001.

[17] S. Rigopoulos and A. Jones. A hybrid cfd-reaction engineering frame-
work for multiphase reactor modeling: basic concept and application to
bubble column reactors. Chemical Engineering Science, 58:3077–3089,
2003.

[18] D. Mewes and D. Wiemann. Two-phase flow with mass transfer in bub-
ble columns. Chemical Engineering & Technology, 26:862–868, 2004.



134 ‖ � � � � � 
 � � � ��� ��� ���
CO2

� �
NaOH

[19] D. Darmana, N. G. Deen, and J. A. M. Kuipers. Modelling of mass
transfer and chemical reactions in a bubble column reactor using a
discrete bubble model. In Proceedings of the 5th International Confer-
ence on Multiphase Flow, Yokohama, Japan, may 30 - June 4 2004.
Paper No. 328.

[20] D. Darmana, N. G. Deen, and J. A. M. Kuipers. Parallelization of an
Euler-Lagrange model using mixed domain decomposition and mir-
ror domain technique: application to dispersed gas-liquid two-phase
flow. Journal of Computational Physics, 2006. In Press, Corrected Proof,
Available online 7 July 2006.

[21] W. K. Harteveld, R. F. Mudde, and H. E. A. Van den Akker. Dynamics of
a bubble column: Influence of gas distribution on coherent structures.
The Canadian Journal of Chemical Engineering, 81:389–394, 2003.

[22] J. Westerweel. Digital particle image velocimetry - theory and application.
PhD thesis, Delft University of Technology, The Netherlands, 1993.

[23] B. P. B. Hoomans, J. A. M. Kuipers, W. J. Briels, and W. P. M. Van
Swaaij. Discrete particle simulation of bubble and slug formation in a
two-dimensional gas-fluidized bed: a hard-sphere approach. Chemical
Engineering Science, 51:99–118, 1996.

[24] A. Tomiyama, H. Tamai, I. Zun, and S. Hosokawa. Transverse migration
of single bubbles in simple shear flows. Chemical Engineering Science,
57:1849–1858, 2002.

[25] A. Tomiyama, T. Matsuoka, T. Fukuda, and T. Sakaguchi. A simple
numerical method for solving an incompressible two-fluid model in a
general curvilinear coordinate system. In A. Serizawa, T. Fukano, and
J. Bataille, editors, Advances in Multiphase Flow, pages 241–252, Ams-
terdam, November 1995. Society of Petroleum Engineers, Inc., Elsevier.

[26] A. W. Vreman. An eddy-viscosity subrid-scale model for turbulent shear
flow: algebraic theory and applications. Physics of Fluids, 16(10):3670–
3681, 2004.

[27] R. V. Bhat. Mass Transfer Accompanied by Multi-step Reactions and
its Application to Gas-Liquid Reactor Design. PhD thesis, University of
Twente, Enschede, The Netherlands, 1998.

[28] J. A. M. Kuipers, K. J. Van Duin, F. P. H. Van Beckum, and W. P. M. Van
Swaaij. Computer simulation of the hydrodynamics of a two dimen-
sional gas-fluidized bed. Computational Chemical Engineering, 17:839,
1993.

[29] K. R. Westerterp, W. P. M. Van Swaaij, and A. A. C. M. Beenackers.
Chemical Reactor Design and Operation. John Wiley & Sons Ltd, 411,
1984.

[30] V. V. Buwa and V. V. Ranade. Mixing in bubble columns reactors: role



� � � � � �	� � � 
 ‖ 135

of unsteady flow structures. Canadian Journal of Chemical Engineering,
81:402, 2003.

[31] S. Weisenberger and A. Schumpe. Estimation of gas solubility in salt
solutions at temperatures from 273k to 363 k. AIChE Journal, 42:298–
300, 1996.

[32] G. F. Versteeg and W. P. M. Van Swaaij. Solubility and diffusivity of
acid gases (CO2 and N2O) in aqueous alkaloamine solutions. Journal of
Chemical & Engineering Data, 33:29–34, 1988.

[33] G. A. Ratcliff and J. G. Holdcroft. Diffusivities of gases in aqueous elec-
trolyte solutions. Transactions of the Institution of Chemical Engineers
and the Chemical Engineer, 41:315319, 1963.

[34] H. Brauer. Particle/fluid transport processes. Progress in Chemical
Engineering, 19:81–111, 1981.

[35] R. Pohorecki and W. Moniuk. Kinetics of reaction between carbon diox-
ide and hydroxyl ions in aqueous electrolytic solutions. Chemical Engi-
neering Science, 43:1677–1684, 1988.

[36] T. J. Edwards, G. Maurer, J. Newman, and J. M. Prausnitz. Vapor-
Liquid equilibria in multicomponent aqueous solutions of volatile weak
electrolytes. AIChE Journal, 24:966–976, 1978.

[37] C. Tsonopolous, D. M. Coulson, and L. W. Inman. Ionization constants
of water pollutants. Journal of Chemical & Engineering Data, pages
190–193, 1976.

[38] M. Eigen. Method for investigation of ionic reactions in aqueous solu-
tions with half times as short as 10−9 sec. Discussions of the Faraday
Society, 17:194–205, 1954.

[39] H. Hikita, S. Asai, and T. Takatsuka. Absorption of carbon dioxide
into aqueous sodium hydroxide and sodium carbonate-bicarbonate so-
lutions. Chemical Engineering Journal, 11:131–141, 1976.



136 ‖ � � � � � 
 � � � ��� ��� ���
CO2

� �
NaOH



5
Toward modelling of large scale bubble column

reactors: implementation of the parallel
calculation strategy for the discrete bubble

model§

”The future is here. It’s just not widely distributed yet.” - William
Gibson

Abstract

In this chapter, we report a parallel algorithm applicable to a Euler-Lagrange
model embedding four-way coupling. The model describing the dispersed
phase dynamics accounts for bubble-bubble collisions and is parallelized
using a mirror domain technique while the pressure Poisson equation for
the continuous phase is solved using a domain decomposition technique
implemented in the PETSc library [S. Balay, K. Buschelman, W. D. Gropp, D.
Kaushik, M. G. Knepley, L. C. McInneds, B. F. Smith and H. Zhang. PETSC
Web page: http://www.msc.anl.gov/petsc, 2001]. The parallel algorithm
is verified and it is found that it gives the same results for both phases as
compared to the serial algorithm. Furthermore the algorithm shows good
scalability up to 32 processors. Using the proposed method, a homogeneous
bubbly flow in a laboratory scale bubble column can be simulated at very
high gas hold-up (37%) while consuming a reasonable amount of calculation
wall time.

§Based on: Darmana et al. [1,2]
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5.1 Introduction

Bubble columns are encountered in a wide range of applications such as
the Fischer-Tropsch process for hydrocarbon synthesis, hydrogenation of
unsaturated oil, oxidation of hydrocarbons, fermentation and (biological)
wastewater treatment. Due to the simplicity in operation, low operating
cost and the good mass, as well as heat transfer characteristics, bubble
columns are often preferred over other types of reactors. The determination
of global parameters such as the integral gas hold-up is of primary
importance for scale-up and design purposes. Unfortunately the global
parameters are strongly influenced by the local flow phenomena. The
behavior of bubble columns is quite complex and detailed understanding
of its dynamics is lacking. As the local properties in the two phase flow
have proven to be difficult to measure in industrial equipment, there is
a growing interest during the last decades to develop models which can
accurately predict the detailed characteristics of bubble columns.
Due to advances in computer hardware and numerical solution methods
Computational Fluid Dynamics (CFD) has emerged as a powerful tool for
both scientists and engineers. Two models are widely used for describing
hydrodynamics of bubble columns, i.e. the Euler-Euler (E-E) model
and Euler-Lagrange (E-L) model. The E-E model employs the volume
or ensemble averaged mass and momentum conservation equations to
describe the time dependent motion of both phases [3–5]. The number of
bubbles present in a computational cell is represented by a volume fraction
and the information on the bubble size distribution is often obtained by
incorporating population balance equations, which take into account
break-up and coalescence of bubbles as well as growth or shrinkage of
bubbles as a result of mass transfer.
The E-L model on the other hand adopts a continuum description for
the liquid phase and additionally tracks each individual bubble using
Newtonian equations of motion taking into account the four way interaction
i.e., the mutual bubble-liquid and the mutual bubble-bubble or bubble-wall
interaction. This allows for a direct consideration of additional effects
related to bubble-bubble and bubble-liquid interaction. Mass transfer with
and without chemical reaction, bubble coalescence and re-dispersion can
be incorporated directly [4,6–8]. Unlike the E-E model, the E-L model does
not require additional models to predict the bubble size distribution since
this information is already part of the solution.
One main limitation of the E-L model is the number of bubbles that can be
treated since for each individual bubble one equation of motion needs to
be solved. Without taking into account direct bubble-bubble interaction
Kitagawa et al. [9] and Sommerfeld et al. [10] have succeeded to simulate
bubble columns with about 105 bubbles simultaneously present in the
column. By neglecting the bubble-bubble interaction, however, bubbles
could overlap with each other. As a consequence, in dense swarms,
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considerable overlap between the bubbles can prevail. If the superficial
gas velocity is sufficiently high, the local gas fraction can approach unity
leading to numerical problems. Sommerfeld [11] claims that if the volume
fraction of the gas exceeds 1 × 10−3, the bubble-bubble interaction becomes
so important in describing the fluid dynamics in the bubble column that
four way coupling is needed. Furthermore, the bubble interaction is also
required as a first step if bubble coalescence needs to be considered.
By introducing direct bubble-bubble interaction into the model, the
computational effort is dramatically increased since the algorithm to solve
the collision sequence is both CPU and memory intensive. Furthermore the
time step required in the bubble tracking algorithm is no longer determined
by the numerical stability criteria but by the time scale of the collision
events, which normally are an order of magnitude smaller than the bubble
tracking time scale. With a collision model Darmana et al. [8] reported that
typically only 104 bubbles can be simulated using a state of the art PC. In
combination with the necessity to perform simulations in three dimensions
with sufficiently fine spatial and temporal resolution, the method proves to
be computationally very demanding and time consuming. On top of that,
the model should be able to perform simulations over a sufficiently long
time to obtain reasonable statistics, as needed for proper analysis of the
column dynamics. This leads to the conclusion that this method is less
attractive in handling large scale bubble columns.
Recently parallelization strategies have received considerable attention in
the multiphase CFD community [12, 13]. By solving a problem in parallel,
not only the time required to solve the problem can be reduced significantly,
also the problem size that can be handled is increased, since the memory
requirements can be distributed. From a numerical point of view, the
Eulerian part of the model is easier to solve in parallel since the discretized
form of the governing equations will lead to a large linear system of the
form Ax = b where the coefficient matrix A is usually sparse. This matrix
problem can be solved in parallel efficiently using a domain decomposition
technique. Parallelization of the discrete part on the other hand is not
straightforward due to the serial nature of the event driven algorithm
implemented for tracking bubble-bubble and bubble-wall collisions [14].
In this chapter a detailed parallelization strategy is presented for solving a
3D transient Euler-Lagrange model taking into account the four way
interaction. The continuous phase is described using the volume-averaged
Navier-Stokes equations, whereas the dispersed phase is described by the
Newtonian equations of motion for each individual bubble. The exchange
of momentum between the gas and the liquid as well as the momentum
exchange between the bubbles (four way coupling) will be accounted for.
The equations describing the bubble motion will be presented in detail,
incorporating all relevant forces acting on the bubble. In order to prevent,
physically impossible, bubble-bubble overlap, the highly optimized direct
bubble-bubble collision algorithm of Hoomans et al. [14] is implemented.
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The Eulerian part of the model is parallelized using the well-known domain
decomposition technique, whereas a so called mirror domain technique is
employed to solve the Lagrangian part in a parallel fashion. To allow
the parallel code to run in both distributed as well as shared memory
architecture, the Massage Passing Interface (MPI) [15,16] paradigm is used.

5.2 Model formulation

The transient, three-dimensional Euler-Lagrange model described in this
chapter consists of two coupled parts: a part describing the bubble motion
and a part describing the liquid phase motion. The model requires consti-
tutive equations for the forces acting on a bubble. The interaction between
the gas and the liquid phase is incorporated via the liquid volume fraction
and a source term in the liquid phase momentum equation. The interac-
tion between the bubbles is modeled via a collision model, including bubble
bouncing and coalescence.

5.2.1 Bubble dynamics

The motion of for each individual bubble is computed from the bubble force
balance. The liquid phase contributions are taken into account by the inter-
phase momentum transfer experienced by each individual bubble. For an
incompressible bubble, the equations can be written as:

mb
dv

dt
=

∑

F (5.1)

dr

dt
= v (5.2)

The net force acting on each individual bubble is calculated by considering
all the relevant forces. It is assumed that the net force is composed of sep-
arate, uncoupled contributions due to respectively gravity, pressure, drag,
lift, virtual mass and wall forces:

∑

F = FG + FP + FD + FL + FV M + FW (5.3)

A brief introduction of these forces will be given here. A more detailed dis-
cussion of these forces can be found in the review papers of Magnaudet and
Eames [17] and Jakobsen et al. [18,19].
The gravity force acting on a bubble in a liquid is given by:

FG = ρbVbg (5.4)

The far field pressure force incorporates contributions of the Archimedes
buoyancy force, inertial forces and viscous strain and is given by:

FP = −Vb∇p (5.5)
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The drag exerted on a bubble rising through a liquid is expressed as:

FD = −1

2
CDρlπR

2
b |v − u| (v − u) (5.6)

where the drag coefficient is given by the following relation

CD = max

[

min

[

16

Re

(

1 + 0.15Re0.687
)

,
48

Re

]

,
8

3

Eö

Eö + 4

]

(5.7)

This drag relation is based on an extensive number of bubble rise velocity
measurements and was derived for 10−2 < Eö < 103; 10−14 < Mo < 107 and
10−3 < Re < 105, where the Eötvös number, Eö = (ρl − ρb)gd

2
b/σ represents

the dimensionless size, the Morton number, Mo = gµ4
l (ρl − ρb)/(ρ

2
l σ

3) is a di-
mensionless parameter describing the system properties, and the Reynolds
number, Re = ρl |v − u| db/µl represents the dimensionless velocity. In this
work we use an air-water system, i.e. Mo = 2.52 × 10−11 and bubble sizes
ranging from 4 to 10 mm, i.e. 2.1 < Eö < 13.4. The steady relative veloc-
ity, vrel = |v − u| can straightforwardly be obtained, when only the gravity,
pressure force and drag force are considered, leading to:

CD
1

2
ρlv

2
rel

πd2
b

4
= (ρl − ρb)gz

πd3
b

6
(5.8)

For air bubbles of this size rising in water, the drag coefficient given in Eq.
5.7 reduces to:

CD =
8

3

Eö

Eö + 4
(5.9)

When Eq. 5.9 is substituted in Eq. 5.8, the following relation for the rise
velocity is obtained:

vrel =

√

2σ

dρl
+

(ρl − ρb)gzdb

2ρl
(5.10)

For an air-water system and bubble sizes as indicated earlier, rise velocities
of vrel ≈ 0.25 m/s are obtained, corresponding to Reynolds numbers in the
range of 1000 to 2500. Note that the influence of shape deformations for large
bubbles is implicitly accounted for through the drag relation.
A bubble rising in a non-uniform, liquid flow field experiences a lift force due
to vorticity or shear in this flow field. The shear induced lift force acting on
a bubble is usually written as [20]:

FL = −CLρlVb (v − u) ×∇× u (5.11)

In this work we use the lift coefficient CL that was derived for 1.39 ≤ Eö ≤
5.74; 5.5 ≤ log10 Mo ≤ −2.8; and shear rates γ < 8.3 s−1 by Tomiyama et
al. [21]:

CL =







min [0.288tanh (0.121Re) , f(Eöd)] ; Eöd < 4
f(Eöd); 4 < Eöd ≤ 10
−0.29; Eöd > 10

(5.12)
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with
f(Eöd) = 0.00105Eö3

d − 0.0159Eö2
d − 0.0204Eöd + 0.474 (5.13)

and
Eöd =

Eö

E2/3
; E =

1

1 + 0.163Eö0.757 (5.14)

where Eöd is a modified Eötvös number using the horizontal diameter of the
bubble that is obtained from the bubble aspect ratio E, which was deter-
mined experimentally by Wellek et al. [22] for Eö < 40 and Mo ≤ 10−6. It
is stressed here that small bubbles will tend to move towards the side of
low liquid velocities, i.e. wall peaking, whereas large bubbles deform and
due to wake effects tend to laterally move in the opposite direction, i.e. core
peaking. It is noted here that although Eq. 5.12 is not strictly valid for the
Morton numbers studied in this work, it is considered the best available clo-
sure for relatively large bubbles.
Accelerating bubbles experience a resistance, which is described as the vir-
tual mass force [20]:

FV M = −CV MρlVb

(

Dbv

Dbt
− Dlu

Dlt

)

(5.15)

where the D/Dt operators denote the substantive derivatives pertaining to
the respective phases. In this work it is assumed that the virtual mass force
does not depend on the local void fraction and a virtual mass coefficient of
CV M = 0.5 is used.
Bubbles in the vicinity of a solid wall experience a force referred to as the
wall force [23]:

FW = −CW
d

2

[

1

y2
− 1

(L− y)2

]

ρl |(v − u) · nz|2 nw (5.16)

where nz and nw respectively are the normal unit vectors in the vertical and
wall normal direction, L is the dimension of the system in the wall normal
direction, and y is the distance to the wall in that direction. Finally, the wall
force coefficient CW is given by:

CW =

{

exp(−0.933Eö + 0.179); 1 ≤ Eö ≤ 5
0.007Eö + 0.04; 5 < Eö ≤ 33

(5.17)

5.2.2 Liquid phase hydrodynamics

The liquid phase hydrodynamics is described by the volume-averaged
Navier-Stokes equations, which consist of continuity and momentum
equations. The presence of the bubbles is reflected by the liquid phase
volume fraction εl and the interphase momentum transfer rate Φ:

∂

∂t
(εlρl) + O · εlρlu = 0 (5.18)
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∂

∂t
(εlρlu) + O · εlρluu = −εlOp− O · εlτl + εlρlg + Φ (5.19)

The liquid phase is assumed to be Newtonian, thus the stress tensor τl can
be represented as:

τl = −µeff,l

[

(

(Ou) + (Ou)
T
)

− 2

3
I (O · u)

]

(5.20)

where µeff,l is the effective viscosity. In the present model the effective vis-
cosity is composed of two contributions, the molecular viscosity and the
turbulent viscosity:

µeff,l = µL,l + µT,l (5.21)

where the turbulent viscosity µT,l is calculated using the sub-grid scale
(SGS) model of Smagorinsky [24]:

µT,l = ρl (CS4)
2 |S| (5.22)

where CS represents a model constant with a typical value of 0.1, S the
characteristic filtered strain rate and 4 = (Vcell)

1/3 the SGS length scale.

5.2.3 Collision model

In this work a hard sphere collision model resembling the model developed
by Hoomans et al. [14] is used to process the sequence of collisions between
bubbles or between bubble and both internal and external obstacles (i.e.
walls) in the computational domain. This model can be illustrated as follows:
consider a set of bubbles consisting of Nb bubbles in total with index B =
{0, 1..Nb − 1} and a set of obstacles O. For every bubble ` ∈ B we can define
a set of possible collision partners N (`) as:

N (`) := (B ∪ O) \ {`} (5.23)

Using the relation reported by Allen and Tildesley [25], we can determined
the time required for a bubble ` to collide with a collision partner m ∈ N (`)
from their initial positions and velocities (i.e. the collision time):

δt`,m =

−r`m · v`m −
√

(r`m · v`m)
2 − v2

`m

(

−r2
`m − (R` +Rm)

2
)

v2
`m

(5.24)

where r`m = r` − rm and v`m = v` − vm. Note that if r`m · v`m > 0 the bubbles
are moving away from each other and will not collide. Furthermore it is
assumed that the relative velocity is constant during δt`,m.
For each bubble ` the individual minimum collision time with other partners

δtN`,n = min(δt`,m), ∀m ∈ N (`) (5.25)
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is determined, where n is the corresponding partner. Subsequently the
global minimum collision time δtea,b is determined from all individual
minimum collision times:

δtea,b = min(δtN`,n), ∀` ∈ B (5.26)

where δtea,b represents the time to the next collision event e. First, all bubble
positions will be updated to the instant of the collision, using a simple first
order integration:

r`(t+ δtea,b) = r`(t) + v`δt
e
a,b (5.27)

Following the movement of all bubbles, collision partners a and b are touch-
ing and the corresponding collision event is treated subsequently. Two types
of collision events can take place: the collision partners can bounce or they
can coalesce. The former process will be explained in this section while the
latter will be explained in section 5.2.4. When the bubbles bounce, the mo-
mentum is exchanged based on conservation of momentum. In this case,
the velocities of both bubbles are divided into a normal and a tangential
component with respect to the line connecting the centres of mass of both
bubbles (see Fig. 5.1). The tangential component does not change due to a
collision while the normal component is changed according to the following
relation (elastic bouncing):

v∗
a = 2

mava +mbvb

ma +mb
− va (5.28)

Updating the velocities of the pair a, b following a collision concludes one
cycle of a collision event.

5.2.4 Coalescence model

Incorporation of the bubble coalescence mechanism into Euler-Lagrange
modeling has been undertaken by Sommerfeld et al. [10] and Van den
Hengel et al. [26]. Sommerfeld et al. [10] predicted the collision using
a stochastic inter-bubble collision model. Coalescence is incorporated
directly by comparing the contact time with the film drainage time. In the
approach adopted by Van den Hengel et al. [26] bubble collisions are
directly calculated using the method given in the previous section while the
coalescence process is predicted using a stochastic approach based on the
model of Chesters [27] and Lee et al. [28].
In the present study Sommerfeld’s approach to determine coalescence in
combination with direct calculation of collision is used. The implementation
is straightforward: for a given bubble collision pair a and b predicted by the
collision mechanism explained in the previous section the film-drainage
time for coalescence to occur is calculated based on the model of Prince
and Blanch [29] as follows:

τab =

√

R3
abρl

16σ
ln

(

h0

hf

)

(5.29)
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before collision after collision
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b

vn∗
b = −vn

b

Figure 5.1: Configuration of bubble bounce following a collision event.

where the initial film thickness for an air-water system was taken as h0 =
10−4 m [30] and the final film thickness just before film breakage was taken
as hf = 10−8 m [29, 30]. The equivalent bubble radius for a system of two
different sized bubbles is obtained from [31]:

Rab = 2.0

(

1

Ra
+

1

Rb

)−1

(5.30)

The contact time between two bubbles is calculated by assuming that it is
proportional to a deformation distance divided by the normal component of
the collision velocity [10] (See illustration in Fig. 5.2):

tcab =
CcRab

|vn
a − vn

b |
(5.31)

where Cc represents the deformation distance normalized by the effective
bubble radius and should be considered as a (calibration) factor. When the
contact time is less than the film breakage time (tcab < τab) coalescence will
not occur and the bubbles will bounce. In all other cases (tcab ≥ τab) coa-
lescence will commence and the properties of the new bubble are obtained
from the encounter rules summarized in table 5.1.
It is noted that despite a vast amount of literature on this topic, there is still
no consensus on the exact formulation of such model. In this work we have
made a modest attempt to put together a coalescence model that includes
the most important aspects of the coalescence process (i.e. film drainage)
employing as much as possible information available from the model (i.e.
bubble sizes and approach velocity). The simulations presented in this work
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Figure 5.2: Configuration of bubble collision and deformation uses in coalescence
model (adapted from [10]).

should therefore be considered as a demonstration of the possibilities a dis-
crete bubble model offers to study coalescing flows and to demonstrate the
impact the inclusion of a coalescence model has on the resulting hydro-
dynamics. Further research on the closure model for coalescence is still
required.

5.3 Numerical solution method

In this section the numerical technique employed to solve the model pre-
sented in sect. 5.2 is described.

5.3.1 Time step

To resolve the time-dependent motion of the gas and the liquid phases, the
discrete bubble model employs three different time scales (see Fig. 5.3). The

Table 5.1: Change of bubble properties in a coalescence event

Parameter Before coalescence After coalescence
Index a , b (a < b) a
Mass ma , mb m∗

a = ma + mb

Volume Va , Vb V ∗
a = Va + Vb

Position ra, rb r∗a = rama+rbmb
m∗

a

Velocity va, vb v∗
a = vama+vbmb

m∗

a
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biggest time step δtflow is used to solve the Navier-Stokes equations to obtain
the liquid phase flow field taking into account the interphase coupling. The
flow time step is divided into a fixed number of smaller bubble time steps,
δtbub. During this time step the forces experienced by each individual bubble
are determined. Based on the net force, Eq. 5.2 is used to determine the
bubble acceleration, which is required to obtain the bubble velocity at the
end of the bubble time step. Within each bubble time step, the velocity of the
bubbles is assumed to change only due to binary collisions between bubbles.
Subsequently, an even smaller collision time step δta,b is used to resolve the
direct bubble-bubble and bubble-wall interaction. The size of this time step
is not fixed and is determined by the sequence of collision events explained
in sect. 5.3.3.

5.3.2 Interphase Coupling

The coupling between the gas and the liquid phases appears through the liq-
uid volume fraction εl and the interphase momentum transfer Φ. Since the
liquid phase and the bubbles are defined in different reference frames (i.e.
respectively Eulerian and Lagrangian), a mapping technique which couples
the two reference frames is required. This mapping technique translates the
Lagrangian bubble quantities to the Eulerian grid, which are required as
closure for the liquid phase equations and vice versa (Euler to Lagrange and
Lagrange to Euler).
Kitagawa et al. [9] give the following criteria for the mapping function:

δtflow

δtbub

δta,b

δtbub

Figure 5.3: Schematic representation of the three time steps employed in the Euler-
Lagrange discrete bubble model.
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1. It should be a smooth function, i.e. the first derivatives should be
continuous.

2. It should have an absolute maximum around the position where the
variable is transferred.

3. For practical reasons it should have a finite domain. At the boundaries
of the domain, the function should be zero.

4. The integral of the function over the entire domain should equal to
unity to ensure the conservation of variable being transferred.

Kitagawa et al. [9] propose to use a Lagrangian template function which
converts the dispersed phase volume fraction to a spatially differentiable
distribution. Using Gaussian and goniometric functions they found that
false numerical velocity fluctuations can be removed and the velocity fluc-
tuation of the continuous phase due to the migration of dispersed elements
(bubbles) through the Eulerian frame can be accurately captured. Using the
same line of thought, Deen et al. [32] proposed to use a fourth-order poly-
nomial function to obtain liquid quantities at the bubble position since the
integration of this function is cheaper compared to a Gaussian function or
the function proposed by Peskin [33]. They found that by employing this
technique, a grid independent solution can be obtained.
Following the successful application of the Lagrangian template technique in
the Euler-Lagrange framework, we adopt this technique for our model in the
present study as well. The template function used is a clipped fourth-order
polynomial function following the work of Deen et al. [32]:

ω (`) = ω (x− r`) =

{

15
16

[

(x−r`)
4

n5 − 2 (x−r`)
2

n3 + 1
n

]

; −n ≤ (x− r`) ≤ n

0 ; otherwise
(5.32)

where 2n is the width of the mapping window.
Fig. 5.4 schematically shows how the Euler-Lagrange two-way coupling is
carried out. The template function is constructed at the center mass of a
bubble `. This template is moving along with the bubble. In any computa-
tional cell j the integral of this function,

∫

Ωj
ω(`)dΩ represents the influence

of bubble ` on cell j or the influence of the Eulerian value in cell j on bubble
`. Note that in 3D space the integral is evaluated as follows:
∫

Ωj

ω(`)dΩ =

∫

Ωj,z

∫

Ωj,y

∫

Ωj,x

ω (x− r`,x)ω (y − r`,y)ω (z − r`,z) dxdydz (5.33)

Given bubble ` and the width of the mapping window 2n, the liquid volume
fraction in computational cell j is calculated using the following formula:

εl(j) = 1 −
∑

∀`∈B
Vb(`)

∫

Ωj
ω(`)dΩ

Vcell
(5.34)
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Lagrangian quantity ψ

n

Figure 5.4: Lagrangian and Eulerian two-way coupling using a template window func-
tion.

The momentum transfer rate from the bubbles to the liquid in a computa-
tional cell j, Φ(j), can be calculated as:

Φ(j) =

∑

∀`∈B φ(`)
∫

Ωj
ω(`)dΩ

Vcell
(5.35)

where φ is the reaction of the momentum transfer exerted on the bubbles,
φ = −∑F.
The calculation of the force exerted on the bubbles requires Eulerian quan-
tities such as the liquid pressure and velocity to be defined at the position
of the bubbles. However, since these quantities are stored in the Eulerian
computational cell, again a mapping function should be defined. Using the
Lagrangian template function, the Eulerian quantity Ψ at a bubble ` posi-
tion, ψ(`) is calculated as:

ψ(`) =
∑

∀j∈C

Ψ(j)

∫

Ωj

ω(`)dΩ (5.36)

5.3.3 Bubble dynamics

Solving for the bubble dynamics requires the calculation of the force clo-
sures given in section 5.2.1. The liquid quantities at the position of bubbles
required to calculate this force are determined using the Euler to Lagrange
mapping function defined in Eq. 5.36. Using an explicit first order scheme,
the bubble velocity at the new time level is calculated as follows:

vn+1 =
ΣFn

mb
δtbub + vn (5.37)
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Next, the bubble volume as well as the interphase force for each bubble is
mapped to the Eulerian grid using the relation given in Eqs. 5.34 and 5.35
respectively to obtain the liquid phase volume fraction εl and the volumetric
interphase momentum transfer rate Φ.
Subsequently bubbles are moved by taking into account the interactions
between bubbles or between bubbles and confining walls. The method as
explained in sect. 5.2.3 is sufficient for this task, however it is (unnecessar-
ily) expensive for three reasons:

❧ The set of possible collision partners N (`) consists of all bubbles and
obstacles in the entire domain, however partners which are located far
away from the bubble ` are unlikely to collide in an immediate event.

❧ According to Eq. 5.26 δt`,m is determined twice since δt`,m is equal to
δtm,`.

❧ Given Ne collision events during bubble time step δtbub, using the
method described in sect. 5.2.3 one should perform Ne × Nb bubble
movements as given by Eq. 5.27 and evaluate Ne times the new global
minimum collision time δtea,b. This procedure also implies that bubbles
that are not involved in collisions will (unnecessarily) be moved Ne

times on a straight line.

To increase the algorithm efficiency in finding δtea,b for every collision event,
we used the concept of a neighbor list window. Using this concept a dynamic
set of W(`) ⊂ N (`) is introduced, which consists of the neighboring possible
collision partners of bubble ` that are located within a finite region close to
the bubble:

W(`) := W(`) ⊂ N (`) | ∀m ∈ N (`), ‖ r`m ‖< Rw (5.38)

To ensure that δt`,m is not calculated twice, we use a simple restriction rule
that bubbles with lower index will only ”see” neighboring bubbles or obsta-
cles with higher index but not the other way around. Using this rule, W(`) is
divided into two unique subsets, namely W(`)+ and W(`)− where neighbors
with index less and greater than index of bubble ` are respectively stored
(see Fig. 5.5 for illustration of the neighbor list window concept).
Using the concept of neighbor list window, we redefine the global minimum
collision time given by Eq. 5.25 as follows:

δtN`,n = min(δt`,m), ∀m ∈ W(`)+ (5.39)

From this point the definition given in Eq. 5.39 is used instead of Eq. 5.26
to calculate the individual minimal collision time δtNl,n unless mentioned oth-
erwise.
Next, the procedure to move bubbles can be optimized by only moving the
bubbles which are actually involved in a collision event and recalculate the
individual minimum collision times for the partners that just collided as
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Figure 5.5: The neighbor list of bubble `, W(`) (shown as grey bubble) consists of all
bubbles (or obstacles) within radius Rw from bubble `. The number represents the
index of the bubble relative to bubble `. In the right picture, the neighbor list is
divided based on the index higher or lower then the index `.

well as all members of their neighbor list. Using this technique, bubbles will
have different timeframes, as the ones which take part in a collision will be
moved and their time will be advanced to the present time whereas the other
bubbles remain at their original times and positions.
To keep track of the timeframe for each individual bubble, we introduce a
variable t`; 0 ≤ t` < δtbub;∀` ∈ B while te; 0 ≤ te < δtbub is used to account
for the accumulation of the global minimum collision time for the whole se-
quence of collision events e occurred in the time interval δtbub. Furthermore
the individual minimum collision time given in Eq. 5.25 is modified accord-
ingly by taking into account the latest time and positions of the bubbles to
calculate the new individual minimum collision time following collision event
e:

δtN∗
`,n = te + min

(

δt∗`,m
)

,∀m ∈ W(`)+ (5.40)

where δt∗`,m is the collision time between bubbles ` and m evaluated for the
bubble position at time te.
After all the collisions have been resolved, the time and positions for all
bubbles are updated to the time level δtbub, which concludes the calcula-
tion procedure for the bubbles dynamics. For the sake of clarity the reader
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Algorithm 1 Optimized bubble dynamics.

Initialize by setting te = 0, t` = 0; ∀` ∈ B
Calculate interphase force, velocity and up list neighbor:
∀` ∈ B ⇒ ΣF (`) ,v (`) ,W(`)+

Map bubble volume and interphase momentum to Eulerian cell:
∀` ∈ B ⇒ Vb (`) → εl;F (`) → Φ
Calculate individual collision time: ∀` ∈ B ⇒ δtN

`,n

Determine global minimum collision time: δte
a,b

while
“

te + δte
a,b

”

< δtbub do
Advance time: te = te + δte

a,b

Update position and time for the collision pair:
∀` ∈ {a, b} ⇒ r`(t

e) = r`(t`) + v` · (te − t`); t` = te

Process collision between pair a and b
Calculate new individual collision time:
∀` ∈

˘

a, b,W(a)−,W(b)−
¯

⇒ δtN∗
`,n

Determine new global minimum collision time: δte
a,b

end while
Move all bubbles: ∀` ∈ B calculate r`(δtbub) = r`(t`) + v` · (δtbub − t`)

can refer to Algorithm 1 for the complete procedure of the optimized bubble
dynamics.

5.3.4 Liquid phase numerical scheme

The numerical solution of the liquid phase conservation equations is based
on the SIMPLE algorithm [34] and applied to solve the volume averaged
Navier-Stokes equation. The computational cells are labelled by indices
(i, j, k) which are located at the cell center and a staggered grid is employed
to prevent numerical instability. Using this arrangement the scalar
variables are defined at the cell centres whereas the velocities are defined
at the cell faces.
Applying first-order time differencing and fully implicit treatment of the
convective fluxes, the discretized form of the continuity equation for the
continuous phase (Eq. 5.18) becomes:

(εlρl)
n+1
i,j,k − (εlρl)

n
i,j,k + δt

δx

{

〈εlρlux〉n+1
i+ 1

2
,j,k − 〈εlρlux〉n+1

i− 1
2
,j,k

}

+ δt
δy

{

〈εlρluy〉n+1
i,j+ 1

2
,k − 〈εlρluy〉n+1

i,j− 1
2
,k

}

+ δt
δz

{

〈εlρluz〉n+1
i,j,k+ 1

2

− 〈εlρluz〉n+1
i,j,k− 1

2

}

= 0

(5.41)

where the superscripts n and n+1 indicate the old and the new time level re-
spectively. For the discretization of mass and momentum convection terms,
the second order accurate Barton scheme [35] is applied.
In the discretization of the momentum equation (Eq. 5.19) the terms associ-
ated with the continuous phase pressure gradients are treated fully implic-
itly while the interphase momentum transfer and other terms are treated
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explicitly. The discretization of the continuous phase momentum equation
(Eq. 5.19) in each direction is respectively given by:

(εlρlux)
n+1
i+ 1

2
,j,k = An

i+ 1
2
,j,k − (εl)

n+1
i+ 1

2
,j,k

δt

δx

{

(p)
n+1
i+1,j,k − (p)

n+1
i,j,k

}

(5.42)

(εlρluy)
n+1
i,j+ 1

2
,k = Bn

i,j+ 1
2
,k − (εl)

n+1
i,j+ 1

2
,k

δt

δy

{

(p)
n+1
i,j+1,k − (p)

n+1
i,j,k

}

(5.43)

(εlρluz)
n+1
i,j,k+ 1

2

= Cn
i,j,k+ 1

2

− (εl)
n+1
i,j,k+ 1

2

δt

δz

{

(p)
n+1
i,j,k+1 − (p)

n+1
i,j,k

}

(5.44)

where momentum convection, viscous interaction, gravity and interphase
momentum transfer have been collected in the explicit terms An, Bn and
Cn.
The numerical solution of the discretized model equations evolves through
a sequence of computational cycles, or time steps, with a duration δt. For
each computational cycle the advanced (n + 1)-level values at time t + δt of
all key variables have to be calculated through the entire computational
domain. This calculation requires the old n−level values at time t, which are
known from either the previous computational cycle or the specified initial
conditions. Then each computational cycle consists of two distinct phases:

❧ calculation of the explicit terms An, Bn and Cn in the momentum equa-
tion for all interior cells,

❧ implicit computation of the pressure for the entire computational mesh
with an iterative procedure. This implicit procedure consists of several
steps.

The first step involves the calculation of the mass residuals for the liquid
phase Di,j,k from the continuity equations (Eq. 5.18), for each interior cell:

D∗
i,j,k = (εlρl)

∗

i,j,k − (εlρl)
n
i,j,k + δt

δx

{

〈εlρlux〉∗i+ 1
2
,j,k − 〈εlρlux〉∗i− 1

2
,j,k

}

+ δt
δy

{

〈εlρluy〉∗i,j+ 1
2
,k − 〈εlρluy〉∗i,j− 1

2
,k

}

+ δt
δz

{

〈εlρluz〉∗i,j,k+ 1
2

− 〈εlρluz〉∗i,j,k− 1
2

}

(5.45)

where the superscript (∗) refers to the most recently obtained values. If the
convergence criterion:

D∗
i,j,k < eps (εlρl)

∗

i,j,k (5.46)

is not satisfied simultaneously for all internal computational cells, then a
whole field pressure correction is calculated using the following relation:

Jn
i−1,j,kδp

new
i−1,j,k + Jn

i+1,j,kδp
new
i+1,j,k + Jn

i,j−1,kδp
new
i,j−1,k + Jn

i,j+1,kδp
new
i,j+1,k+

Jn
i,j,k−1δp

new
i,j,k−1 + Jn

i,j,k+1δp
new
i,j,k+1 + Jn

i,j,kδp
new
i,j,k = −D∗

i,j,k
(5.47)
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where Jn represents the Jacobi matrix which contains the derivative of de-
fect D with respect to the liquid pressure at time level n and has been ob-
tained analytically from the continuity equation for the liquid phase in com-
bination with the momentum equations. Applying Eq. (5.47) for all internal
computational cells results in a set of linear equations that can be assem-
bled in matrix form as:

Jn · δpnew = −D∗ (5.48)

To save computational effort the elements of the Jacobi matrix are evaluated
at the old time level. By solving Eq. 5.48, a pressure correction term is ob-
tained and new pressure is subsequently calculated followed by calculation
of the new velocity field.
Provided that the corresponding estimates of the mass residual (Eq. (5.45))
do not meet the convergence criteria simultaneously for all interior computa-
tional cells, the pressure correction equation (Eq. (5.47)) is again calculated
using the updated velocity field to compute the mass residual D for all cells.
This iterative process is repeated until the convergence criteria are satisfied
or the specified maximum allowable number of iterations reached.

5.4 Parallelization strategy

The dynamic nature of bubbles makes their spatial distribution
non-uniform. This implies that the number of collisions is considerably
higher in more dense regions when compared with dilute regions [36] which
implies that partitioning of the model based on bubble position (i.e. the
domain decomposition) cannot give a high parallel efficiency.
In the present model, parallelization for the disperse phase is carried out
using a so called mirror domain technique. Unlike domain decomposition
technique where each processor hold unique computational subdomain and
synchronized the data only at the subdomain boundary, each processors in
mirror domain technique hold identical complete computational data (i.e.
data is mirrored through all processors). Unique data subset is determined
for each processors and calculation is conducted by each processors only
for this subset of data. Since calculation in each processor is done only
for unique portion of data, the data is no longer identical throughout the
processors set hence synchronization by interchanging data between
processors is required after each calculation step.
This section describes the parallelization strategy of the numerical method
explained in sect. 5.3. The model is partitioned and distributed over
a set of processors P = {0.1..NP − 1} using mirror domain technique for
the disperse phase while a domain decomposition technique is adopted
in solving the continuous phase. The interprocessor communications is
carried out using Message Passing Interface (MPI).
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Algorithm 2 The parallel algorithm executed on each processor P for the
optimized bubble dynamics using the mirror domain concept.

Initialize by setting: te = 0, t` = 0; ∀` ∈ B
Determine local bubble set: BP ⊆ B
Calculate local interphase force, velocity and up list neighbor: ∀` ∈ BP ⇒ ΣF (`) ,v (`) ,W(`)+

∀` ∈ BP gather and scatter v (`)
Map local bubble volume and local interphase momentum to the Eulerian cell:
∀` ∈ BP ⇒ Vb (`) → εl;F (`) → Φ
Gather (with sum operator) and scatter: εl and Φ
Calculate local individual collision time: ∀` ∈ BP ⇒ δtN

`,n

Determine local minimum collision time: δte
a,b

Gather (with minimal operator) and scatter to obtain global minimum collision time: δte
a,b

while
“

te + δte
a,b

”

< δtbub do
Advance time: te = te + δte

a,b

Update position and time for the collision pair:
∀` ∈ {a, b} ⇒ r`(t

e) = r`(t`) + v` · (te − t`); t` = te

Process collision between pair a and b
Calculate new local individual collision time:
∀` ∈

˘˘

a, b,W(a)−,W(b)−
¯

TBP
¯

⇒ δtN∗
`,n

Determine new local minimum collision time: δte
a,b

Gather (with minimal operator) and scatter to obtain new global minimum collision time:
δte

a,b

end while
Locally move all bubbles: ∀` ∈ BP ⇒ r`(δtbub) = r`(t`) + v` · (δtbub − t`)
∀` ∈ BP gather and scatter r (`)

5.4.1 Discrete phase

Using the mirror domain technique for the disperse phase, we exploit the
fact that for a given identical initial data set of bubble positions and ve-
locities as well as the continuous phase flow field across the processors, the
calculation of the bubble dynamics can be performed independently for each
individual bubble in a effective parallel fashion. Data uniformity throughout
processors is maintained by either calculating part of the data locally and
interchange between processors or execute an identical procedure on iden-
tical data locally on each processor.
The serial algorithm shown in Algorithm 1 is modified using the mirror do-
main concept. The resulting parallel algorithm executed on each processor
P is given in Algorithm 2. First the initialization procedure is executed.
Subsequently a local bubble list BP ⊆ B is determined. Two types of bubble
partitioning are used: based on memory location and based on bubble index
using a round-robin rule. To calculate the interphase force and velocity,
the first partitioning technique is used in view of the fact that the message
passing interface can transfer continuous data in memory much faster than
repeatedly transferring single data. The bubble partitioning using round-
robin is used in determining the collision time, since bubbles only see other
bubbles with a higher index, thus partitioning based on the memory loca-
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P2

P2

P2

P1

P1

P1

(a) (b) (c)

Figure 5.6: Illustration of parallel strategy for bubble force calculation, Euler to La-
grange mapping and Lagrange to Euler mapping. (a) mirrored bubble data at all
processors Pn. (b) new data for unique subset of bubble is calculated in parallel
on each processors Pn. (c) updated local data is gathered and mirror through all
processors.

tion would only result in poor parallel performance as the processors with a
higher index will calculate bubbles with a higher index with less associated
possible bubble neighbors, while processors with a lower index will calculate
bubbles with a lower index with more bubble associated neighbors.
For all local bubbles, the interphase forces, velocities and up-list neighbors
are calculated next (see illustration in Fig. 5.6). The bubble velocities pre-
viously calculated locally are combined to obtaine a complete set of bubble
velocities in all processors. Subsequently the local interphase forces and the
bubble volume are mapped to the local Eulerian grid to obtained local liquid
volume fraction and interphase momentum transfer. Using the sum opera-
tor available in MPI, these local quantities are combined and redistributed
to all processors to obtain the global liquid volume fraction and interphase
momentum transfer rate.
Next the collision sequence is determined (see illustration in Fig. 5.7). First
the individual collision time is calculated for all local bubbles partitioned in
a round-robin manner. For all local individual collision times previously cal-
culated, the local minimum collision time is determined. By making use of
the minimum operator available in MPI, the local minimum collision times of
all processors are compared to determine the global minimum collision time
and distribute the result to all processors. While the accumulated event time
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P2

P2P2

δt1

P1

(a) (b) (c)

δt2

δt = min (δt1, δt2)

P1P1

Figure 5.7: Illustration of parallel strategy for bubble encounter detection. (a) mirrored
bubble velocity and position at all processors Pn. (b) each processors Pn calculate
processor global minimum encounter time δtn for a unique subset of bubbles. (c)
processor global minimum encounter times are compared to find global minimum
encounter time δt followed by updating the bubble position in all processors by δt.

te is smaller than the bubble time step, all processors execute an identical
procedure which consecutively consists of updating the accumulated event
time, updating the positions and individual times for the collision partners,
and process the collision between partners a and b.
Subsequently, the new local individual collision times are determined for
the collision pair and all their down-list neighbors. The calculations how-
ever, are carried out only on the processors associated with the considered
bubbles. Based on all local individual collision times a new local minimum
collision time is determined. Again, using the MPI minimum operator the
global minimum collision time is determined and distributed to all proces-
sors. These steps are repeated until the next accumulated event time is
exceeding the bubble time step. Finally all processors locally move the bub-
bles to time level δtbub and gather the bubble positions from other processors
to obtain a complete set of bubbles positions.
Using the present approach, a total of 4 × Nv variables defined on the Eu-
lerian grid (Φ in three directions + εl) and 6 × Nb variables defined on the
Lagrangian bubble positions (velocities and positions in three directions)
have to be interchanged between processors outside the while loop for ev-
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ery δtbub, while for every collision event 3 variables consisting of the local
minimum collision time and collision partners have to be interchanged. All
communications except the ones inside the while loop are carried out in a
non-blocking fashion (i.e. overlapping with the calculation) to reduce the
effective communication time. The amount of data that has to be com-
municated for every collision event is very small hence cannot benefit from
overlapping communication with calculation.
It is noted that there is no memory reduction for the main bubble variables
such as positions and velocities, as these variable have to be known on
each processor, however significant memory reduction arises from the up-
list neighbor requirements. For a maximum number of N+

W up-list neighbors
per bubble, a total of Nb × N+

W memory blocks should be allocated in a se-
rial calculation. Whereas for a number of NP

b local bubbles, only NP
b × N+

W

memory blocks are required on each processors for the parallel calculation.
As the number of main bubble variables is much less than N+

W , one might
expect to have a memory reduction factor of ≈ NP by running a simulation
in parallel with NP number of processors.

5.4.2 Continuous phase

The continuous phase calculation is parallelized by making use of the PETSc
library version 2.3.0 [37–39]. PETSc is a suite of data structures and rou-
tines for the scalable (parallel) solution of scientific applications modeled by
partial differential equations. It employs the MPI standard for all message-
passing communication. PETSc has been used for a wide variety of appli-
cations, including computational fluid dynamics, structural dynamics, ma-
terials modeling and econometrics. Many of the solvers are appropriate for
problems discretized using either structured grids or unstructured grids. In
the present study we consider PETSc as a black box hence it will only briefly
be discussed. Interested readers are referred to the PETSc user manual or
publications on application simulations developed by PETSc users [40–43].
The discrete bubble model uses the linear solver component of PETSc to
solve the pressure correction equation given in Eq. 5.48 and uses the effi-
cient parallel data formats provided by PETSc to store the Jacobian matrix
and the defect vector. As the parallel calculation for the discrete phase re-
quires that complete data sets of the liquid velocity and pressure are known
on all of the processors, solving the pressure correction matrix using PETSc
is straightforward. For instance, one can divide the hepta-diagonal matrix
in several block rows according to the number of processors involved in the
calculation and fill the corresponding blocks locally as shown in Fig. 5.8.
By calling the PETSc linear solver command in each processor the matrix
is solved iteratively in parallel by taking into account coupling with other
matrix elements which reside on the other processors. After convergence is
reached, the solution block of the linear equations (i.e. the pressure cor-
rection terms) are available locally. Subsequently each processor can in-
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terchange their local pressure correction terms to obtain a complete set of
pressure corrections followed by the calculation of new pressure and veloci-
ties for the whole domain.
PETSc provides interfaces to various Krylov methods, such as conjugate
gradient (CG), generalized minimal residual (GMRES), biconjugate gradient
(BCG), etc. It also provides access to various preconditioners such as Jacobi,
block Jacobi, additive Schwartz, etc. Several tests have been conducted us-
ing various combinations of the Krylov methods and the associated precon-
ditioners. It was found that the combination of the conjugate gradient Krylov
method with the block Jacobi preconditioner gives the best performance for
the present model. The number of subdomain blocks for the block Jacobi
is set to one (default value) so that each processor gets a complete subdo-
main of the problem and does a single local incomplete factorization on the
Jacobian corresponding to this subdomain [43]. To increase convergence
rate, elements in the off diagonal block matrix which are responsible for the
coupling terms between processors should be minimized. Therefore in the
present study the matrix is arranged in such way that each block rows cor-
respond with the physical domain partition which gives fewest elements in
off-diagonal blocks. By rearranging the matrix structures in this way, the
solution is obtained about 20% faster compared to regular matrix partition

J11 J12 J13 J14

D1

D2

D3

D4

δp2

δp1

δp3

δp4

Figure 5.8: Illustration of the decomposition of an hepta-diagonal matrix resembling
the three dimensional pressure correction equations into 4 block rows.
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Table 5.2: Simulation conditions for the simulation of homogeneous bubbly flow in a
lab-scale bubble column.

Variable Value
Physical domain 0.2 m × 0.2 m × 0.6 m
Computational cell 60 × 60 × 180
δtflow 10−3 s
δtbub 10−4 s
Liquid density 103 kg/m3

Liquid viscosity 10−3 Pa s
Gas density 1 kg/m3

Surface tension 0.073 N/m
Gravitational acceleration 9.81 m/s2

Initial bubble diameter 4 × 10−3 m
Size of window mapping 3db m
Number of gas nozzle 625 (uniformly arranged with

8 mm2 pitch distance)

as shown in Fig. 5.8.

5.5 Parallel algorithm verification and benchmark

In this section the parallel algorithm is subject to verification and
benchmarking. A homogeneous bubbly flow in a square lab-scale bubble
column with medium to high gas hold-up is selected as a test case since
it represent a previously ”beyond reached” case to simulate with an
Euler-Lagrange model. The simulation conditions are summarized in Table
5.2. Air is injected from 625 nozzles located at the bottom of the column
into an initially quiescent liquid. The boundary conditions are imposed to
the column using the flag matrix concept of Kuipers et al. [44] as illustrated
in Fig. 5.9. The definition of each boundary condition is given in Table 5.3.
The configuration of boundary conditions used in the simulations has been
carefully investigated. The prescribed pressure cells close to the column
surface wall are required as inlet as well as outlet channel to compensate
for the change of liquid volume due to bubbles entering and leaving the
column. The width of this pressure cell slit is one third of the total width of
the column and located in the middle. It was found that this configuration
avoids instabilities developing at the top surface of the column [8]. The
simulation was conducted on an SGI Altix 3700 system, consisting of total
416 CPUs (Intel Itanium 2, 1,3 GHz, 3 Mbyte cache each). Every node
in the Altix is a CC-NUMA machine (i.e. Cache-Coherent Non Uniform
Memory Access). In the CC-NUMA model, the system runs one operating
system and shows only a single memory image to the user even though the
memory is physically distributed over the processors. Since processors can
access their ’own’ memory (i.e. memory on the same physical board as the
processor) much faster than that of other processors, memory access is
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Figure 5.9: Typical boundary conditions used in simulations with the discrete bubble
model. The vertical plane is at j = NY/2 while the horizontal plane is at k = NZ.

Table 5.3: Cell flags and corresponding cell types used in defining boundary condi-
tions.

Flag Boundary conditions
1 Interior cell, no boundary conditions specified
2 Impermeable wall, free slip boundary
3 Impermeable wall, no slip boundary
4 Prescribed pressure cell, free slip boundary
5 Corner cell, no boundary conditions specified

non uniform (NUMA).
In the present simulation, the domain partitioning in the continuous phase
calculation was applied in the z direction only as can be seen in Fig. 5.10.
This partition configuration has been selected since it gives the smallest
inter-domain connection, which minimizes data communication between
processors.

5.5.1 Parallel verification

For verification and benchmarking purposes a superficial gas velocity of
3 cm/s is used. The verification is performed by comparing the simulation
results obtained by the serial and parallel algorithms. The liquid phase
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Figure 5.10: Domain partitioning for parallel flow solver calculation using 1,2 and 4
processors.

velocity in the vertical direction is compared, moreover we also compare the
mapped bubble vertical velocity. For this comparison series of simulations
were conducted from identical initial conditions. The comparison was
made after the flow has evolved during 500 flow time steps. Figure 5.11
(top) shows the vertical liquid velocity along the vertical center-line of the
column while Fig. 5.11 (bottom) shows the mapped bubble vertical velocity
on the same line. As we can see, after 500 flow time steps, there are no
significant differences between the serial and parallel solutions.
The parallelization of the parallel bubble solver algorithm is verified by
comparing the time series of the l2 norm of the consecutive event contact
points. The event contact point between collision partners a and b is
determined using the following relation:

xc = xa + {Ra + 0.5 (| xab | − (Ra +Rb))} ·
xab

| xab |
(5.49)

with xab = xb − xa the translation vector between collision partners a and
b. Figure 5.12 shows the comparison of the event contact point between
collision partners recorded in the simulation using the serial and parallel
algorithms. As we can see, the differences between sequential and parallel
solution are not observable, which implies that similar events are obtained
using both algorithms.

5.5.2 Parallel performance

According to Ferziger and Peric [45], the analysis of the performance of para-
llel programs can be characterized by the speed-up factor and the efficiency
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Figure 5.11: Comparison of uz (top) and vz (bottom) at the vertical center-line of the
column, the vertical lines in the figure represent the locations of the partition do-
mains. The simulation is started from identical initial conditions for the serial and
parallel cases. The comparison was made after the flow has evolved during 500 flow
time steps from the initial condition.
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Figure 5.12: Time series of the l2 norm of a sequence of 200 event contact points as
obtained from the serial and parallel algorithms.

defined respectively by:

Sn =
Ts

Tn
(5.50)

and

En =
Ts

nTn
(5.51)

where Ts is the execution time for the best serial algorithm on a single pro-
cessor and Tn is the execution time for the parallelized algorithm using n
processors.
In this study the measurement of calculation times was conducted after the
flow was fully developed, which can be assessed by monitoring the number
of bubbles present in the column. When the column reaches a steady state
condition (in the terms of bubble hold-up) the number of bubbles entering
and leaving the column is more or less similar. For the present study, the
steady state is reached 10 s after the bubbles is enter the column.
Figure 5.13 (top) shows the speedup obtained with 1, 2, 4, 8, 16 and 32 pro-
cessors while Fig. 5.13 (bottom) shows the corresponding efficiency. As can
be seen from these figures, the proposed parallel algorithm demonstrates
good scalability. Using 32 processors a speed-up of more than 20 can be
reached while the corresponding efficiency is still relatively high. The per-
formance of the total model in terms of speed-up and efficiency is a weighted
average of the underlying dispersed and the continuum parts. For this rea-
son, the curves for the total model always lie in between the curves for the
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two separate parts.

5.6 Application to bubbly flow

In this section, the proposed method is applied to simulate the buoyancy
driven flow in a square bubble column for an air-water system. The square
bubble column introduced in sect. 5.5.1 is used as a base configuration.
Two cases are simulated; a case with and without coalescence model, to
investigate the influence of coalescence on the bubble size distribution and
the hydrodynamic characteristics.

5.6.1 Hydrodynamics of homogeneous bubbly flow

Air is injected through 625 individual nozzles into an initially quiescent liq-
uid as shown in Fig. 5.14. Shortly after the bubbles are released, they
start to rise in the column and drag the liquid upwards. For the case that
the nozzles are only present in the center area of the column, Darmana et
al. [8] observed a mushroom-shaped bubble plume during the initial period
of bubble injection. In the present simulation this shape is not observed
due to the uniform aeration, which induces a uniform liquid flow. Instead
of generating a mushroom-shaped bubble plume, the bubbles rise in a uni-
form fashion.
After about 3 s the first bubble escapes from the column. Liquid vortices are
generated close the surface of the column with upward direction in the cen-
ter region and downward direction close the corners of the column. This type
of liquid vortices is normally responsible for creating large scale fluctuations
as they will travel downwards in a region close to the wall and influence the
bubbles close to the inlet region. However in the present configuration, the
down flow which is developed near the wall region is counteracted by the
bubbles moving upward in that region resulting in suppression of the liquid
down flow and a local bubble velocity reduction.
A fully developed flow condition is reached after about 10 s of operation. A
typical snapshot of the flow structures after the flow has become fully de-
veloped is shown in Fig. 5.15. The figure clearly depicts that the bubble
trajectories are rectilinear in the small region close to the inlet region of the
column. In this region, bubble velocities are mainly directed vertically re-
sulting in a smooth path of bubbles. However as the bubbles move further
from the inlet, interaction with the liquid as well as interaction with the
other bubbles becomes more pronounced which turns the bubble trajectory
into a non-smooth path. In this situation the horizontal components of the
bubble velocities become more significant resulting in non-smooth bubble
trajectories.
The pronounced liquid agitation which prevails during the first few seconds
of the simulation has disappeared and is replaced by various small vortices,
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Figure 5.13: Speed-up (top) and efficiency (bottom) of the dispersed and continuous
phase solver for different number of processors to evaluate the performance of the
parallel algorithm on a 60 × 60 × 180 numerical grid containing ≈ 105 bubbles. The
measurement was conducted after the flow in the column is fully developed.
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Figure 5.14: Series of corresponding liquid velocity fields, bubble velocity fields and
bubble positions obtained from the simulation of an non-coalescing air-water bubble
column at different times after the air flow was switched on. Gas superficial velocity
= 3 cm/s.
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which are distributed randomly in the liquid phase. These vortices are not
strong enough to influence the bubbles trajectory in general as can be seen
in the figure showing the bubble path-way. A weak down flow is observed in
the vicinity of each corner of the column which slightly reduces the bubble
velocities in these areas.
The time-averages of the gas phase volume fraction, bubbles velocity and
the liquid velocity of the column are shown in Fig. 5.15. The time-average
of quantity φ is calculated as:

φ =
1

Nt

Nt
∑

i=1

φi (5.52)

where Nt is the number of time steps used in the averaging.
The time-averaged quantities clearly show that the column exhibits uniform
behavior. The gas volume fraction is uniform almost everywhere except close
to the corner regions where there are slightly less bubbles present. Variation
of the gas volume fraction can also be observed close to the inlet region. In
this region stripes corresponding to higher and lower volume fractions are
discernible as a direct result of the rectilinear bubble motion in this region.
On average the bubble velocity is relatively uniform except close to the cor-
ner area where the bubble velocity is lower than in the rest of the column.
A very low average liquid velocity is observed in the entire column. A weak
large scale circulation pattern is observed in the upper half region of the
column where up-flow is located in the center region while down-flow is lo-
cated in the corners. The down-flow however terminates to exist at about
one third of the column height.

5.6.2 The effect of coalescence

Next, the influence of coalescence on the flow structures is investigated. A
fully developed flow condition in the column which was obtained from the
model without coalescence was used as the initial condition. After the co-
alescence model was turned on, the simulation was run for another 10 s
to allow the column to reach its new fully developed condition. A typical
snapshots of a fully developed flow structure when the bubble coalescence
model is taken into account is given in Fig. 5.16a. It can be seen that the
column exhibits different flow structures compared to the case without coa-
lescence. First of all a non-uniform bubble size distribution is obtained as a
direct result of the coalescence process. The variation of the bubble size au-
tomatically induces a variation of the bubble velocities as big bubbles tend
to move faster than small bubbles. As the speed of a bubble increases, it
will catch the smaller (i.e. slower) bubbles on its path. Another coalescence
event might occur following the collision resulting in even bigger and faster
moving bubbles, which leads to a continuous growth of the bubbles as they
ascend.
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Figure 5.15: Snapshots of instantaneous bubble positions, bubble velocities and cor-
responding liquid velocities at t=65 s (a) and the corresponding averaged quantities
of the gas phase volume fraction, bubble velocity and liquid velocity (b). Averaging
is taking place for the last 45 s. Simulation results with a gas superficial velocity of
1 cm/s and the coalescence model turned off.
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The lift coefficient, which initially tends to disperse the bubbles towards the
wall, changes sign as the bubbles are getting bigger and as a consequence
cause to move the bubbles toward the center of the column instead. This be-
havior produces a narrowing of the bubble swarm near the top region of the
column as can be observed in Fig.5.16a. The bubble size distribution also
influences the liquid velocity as the fast moving bubbles will induce a higher
liquid velocity as well. The snapshots clearly show that the liquid velocity
gradually turns into a irregular pattern as the mean bubble size increases.
In the corner regions where there are less bubbles, strong downward liquid
flow is developed. This flow appears to push the bubble dispersion toward
the center column even further.
The corresponding time-averaged flow field of the coalescence case is given
in Fig. 5.16b. The average gas volume fraction clearly shows the narrow-
ing behavior of the bubble dispersion. The average bubble velocity is higher
compared to the case without coalescence and increases further with in-
creasing height. Furthermore, the regions in the corners with low bubble
velocity are wider compared to the non-coalescing case. The average liquid
velocity clearly shows large scale circulation patterns with upward flow in
the center of the column and downward flow in the corners.
A more quantitative comparison is obtained by comparing the time-average
liquid and bubbles velocities along the horizontal axis at a height of h =
0.45 m. Figures 5.17a and 5.17b show the lateral profiles of the liquid and
bubble velocity respectively. As can be seen from these figures, without coa-
lescence model, the average liquid velocity is very small. In the central region
of the column the averaged liquid velocity is −1cm/s while a maximal velocity
of 4 cm/s is observed in the region close to the wall. When the coalescence
model is turned on, the averaged liquid velocity is dramatically changed as
the averaged liquid velocity now shows velocities of about 12.5 cm/s in the
central part of the column. A similar picture emerges for the average bubble
velocity as the velocity at the center of the column is increased from 20 cm/s
for the case without coalescence to 35 cm/s for the case with coalescence.
The influence of coalescence on the average liquid velocity fluctuations is
shown in Fig. 5.18. The average liquid velocity fluctuations are calculated
as:

u′ =
1

Nt

√

√

√

√

Nt
∑

i=1

(ui − u)
2 (5.53)

As can be see from Fig. 5.18, the coalescence model also amplifies the veloc-
ity fluctuations. The fluctuations in the vertical direction which was formerly
uniform has doubled in the center region of the column and increased by
a factor of three near the wall when the coalescence is taken into account.
A similar result is obtained for the fluctuations in the horizontal direction
where the fluctuations are increased four times over almost the entire width
of the column. The amplification of the velocity fluctuations arises since the
coalescence leads to the formation of regions with lower gas hold-up where
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Figure 5.16: Snapshots of instantaneous bubble positions, bubbles velocities and cor-
responding liquid velocities (a) and the averaged quantities of the gas phase volume
fraction, bubble velocity and liquid velocity (b). Simulation results with a gas super-
ficial velocity of 1 cm/s and the coalescence model turned on.
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Figure 5.17: Comparison of the average liquid velocities (a) and average bubble veloci-
ties (b) between the cases with and without coalescence at a height of z = 0.45 m and
a depth of y = 0.1 m. The gas enters the column uniformly at a superficial velocity of
1 cm/s.
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liquid vortices start to develop. These vortices in turn will influence the bub-
ble motion and the induced velocity fluctuations.
Figure 5.19 (top) shows the bubble size distribution in four different vertical
regions of the column. The regions are four non-overlapping, equally-sized
compartments. All bubbles inside one particular compartment are grouped
based on their volume resulting from binary coalescence events. Ten differ-
ent bubble classes are used, resembling bubble sizes resulting from 1 to 9
coalescence events. Furthermore, the tenth class contains bubbles that ex-
perienced more than 9 coalescence events. The number of bubbles in each
class is normalized by the total number of bubbles in the compartment.
In the lower part of the column, the bubble size appears to be homogeneous
with 90% of the bubbles having the initial size of 4mm, while about 10% of the
bubble population has experienced one coalescence event. A sudden change
can be observed at h = 0.225 m as more than 50% of the bubbles in this re-
gion have already coalesced (i.e. about 30% coalesced once while the rest of
the bubbles coalesced more than once). At h = 0.375 m only 30% of the total
bubble population did not experience coalescence. This number is more or
less equal to the number of bubbles that already coalesced once while 15%
of the bubbles in this region coalesced twice. In this region we can also ob-
serve that about 5% of the bubbles coalesced more than 8 times. In the two
upper regions of the column the bubble distribution is more or less similar,
however we can clearly see that the number of bubbles that coalesced more
than 9 times has doubled in the upper region compared to the region below
into more than 10%.
For each region the average of the bubble size distribution is represented
by the Sauter mean diameter which reflects the mean bubble size for all
bubbles in the region averaged on basis of specific area and is given as:

d32 = ΣNb
i=1

d3
i

d2
i

(5.54)

Figure 5.19 (bottom) shows the Sauter mean diameter at six different loca-
tions measured from the bottom of the column shown in Fig. 5.16. As can
be seen for this particular case, due to coalescence the volume mean diam-
eter is increased almost linearly as a function of distance from the inlet. It
also appears from this simulation that due to coalescence the bubbles have
doubled in size during their residence in the column.

5.6.3 Integral gas hold-up as function of superficial velocity

With the present parallel algorithm, the limitation of the discrete bubble
model on the gas hold-up that can be treated has virtually been eliminated.
In this study we use the model to predict the integral gas hold-up as a func-
tion of the superficial gas velocity. Using a gas inlet consisting of multiple
nozzles that are uniformly arranged at the base of the column, Harteveld et
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Figure 5.18: Comparison of the average liquid velocity fluctuations in the vertical (a)
and horizontal direction (b) between cases with and without coalescence at a height
of z = 0.45 m and a depth of y = 0.1 m. The gas enters the column uniformly at a
superficial velocity of 1 cm/s.
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Figure 5.19: Top: bubble size distribution in four regions along the vertical axis of the
column (x = 0.1 m ; y = 0.1 m). Bottom: Sauter mean diameter (d32) along the vertical
axis of the column. The gas enters the column uniformly at a superficial velocity of
1 cm/s.
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Figure 5.20: Dependency of the integral gas hold-up in the bubble column predicted
by the present model in comparison with the experimental measurement with similar
superficial gas velocity by Harteveld et al. [46].

al. [46] showed that a much higher gas hold-up can be obtained compared
to other types of inlets such as sintered or porous plates.
The column geometry and the nozzle arrangement explained in Sect. 5.5 is
used as a base model. Without the coalescence model taken into account,
cases were run with superficial velocities ranging between 1 cm/s and 7 cm/s
and the average integral gas hold-up under fully developed conditions is
monitored and compared with experimental measurement data of Harteveld
et al. [46]. It is noted that the column used in the work of Harteveld is cylin-
drical, whereas it is square in our work. This has an effect on the liquid
down flow, which mostly takes place in the circumferential wall area and in
the corners respectively. It is believed however that the flow in the core in
the column is hardly affected by the geometry, which allows us to make a
direct comparison.
Figure 5.20 shows the comparison between the simulation results and the
experimental measurement data. As can be seen a gas hold-up up to 37%
can be obtained with the present model. The number of bubbles simulta-
neously present in the column ranges from about 3.3 × 104 at a superficial
velocity of 1 cm/s to 2.7 × 105 at a superficial velocity of 7 cm/s. The increase
in gas hold-up with the superficial gas velocity is almost linear as can be
inferred from Fig. 5.20. The simulation results show perfect agreement with
the experimental measurements.
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5.7 Conclusions

In this study, a parallelization strategy for a two-phase Euler-Lagrange
model for bubbly flow has been successfully developed accounting for four
way coupling. A new mapping technique based on the work of Kitagawa et
al. [9] has implemented which relates data in the Eulerian and Lagrangian
frame.
The implementation of the parallel algorithm was verified by comparing the
computational results obtained from the serial and parallel algorithms.
It was demonstrated that both algorithms give the same results.
Speed-up and efficiency measurements were performed to investigate the
performance of the parallel algorithm. A maximum speed-up up to 20 can
be reached using 32 processors.
Subsequently the proposed model was used to investigate the influence
of coalescence on the hydrodynamics of a bubble column. We found that
the coalescence phenomenon changes the flow structures considerably,
furthermore the average velocities and velocity fluctuations of both phases
are changed considerably. In the present study break-up is not yet
taken into account thus incorporation of coalescence in our calculations
admittedly tends to give overprediction in bubble size distribution.
The model is used to predict the integral gas hold-up in a homogeneous
bubble column as a function of the gas superficial velocity. A maximum
gas hold-up of 37% can be achieved with the present model. A perfect
agreement of our computations with the experimental data by Harteveld et
al. [46] was found for.
Using the present parallel algorithm, it becomes possible to simulate a
relatively large scale bubble column. In addition to the work described in
this chapter, we used the model to simulate a bubble column with twice
the height of the column described in sect. 5.5 to investigate the different
flow structures resulting from different coalescence models. Figure 5.21
shows example results obtained from the simulation. The figure on the left
shows the typical result of homogeneous bubbly flow without coalescence
taken into account, which gives similar flow structures like the case in
a shorter column. When the coalescence model is switched on, some
bubbles coalesce as they ascend toward the top surface. The mean size
of the bubbles is larger further from the inlet. In reality, bubbles will
experience breakage as they reach their critical size. As no breakage model
is incorporated in the present model, the influence of breakage is mimicked
by limiting the maximum bubble size in the column calculated based on
the critical bubble size. The result from this approach is shown in the
right of Fig. 5.21. It can be clearly seen that the structure of the bubbles
in the case both breakage and coalescence are accounted for is different
with the result where only coalescence is considered. Here, the bubble
size increases up to about half of the height of the column and becomes
constant, since the bubbles have reached their critical size. These results
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Figure 5.21: Example of the application of the discrete bubble model to a large bubble
column. The column dimensions are 0.2 m × 0.2 m × 1.2 m; the grid size is similar to
the case given in sect. 5.5. Left: simulation without coalescence taken into account;
middle: with coalescence taken into account; right: coalescence accounted for, how-
ever a maximal bubble size is applied to mimic the balance between coalescence and
break-up.
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indicate the importance of incorporating breakage in the discrete bubble
model. A proper implementation of the breakage model however, still has to
be investigated in the future.
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Notation

B set of bubbles, dimensionless
C model coefficient, dimensionless
d diameter, m
E eccentricity, dimensionless; efficiency, dimensionless
Eö Eötvös number, Eö = (ρl − ρb)gd

2
b/σ, dimensionless

F force vector, N
g gravity acceleration, m s−2

h film thickness, m
I unit tensor, dimensionless
m mass, kg
Mo Morton number, Mo = gµ4

l (ρl − ρb)/(ρ
2
l σ

3), dimensionless
N set of possible collision partners, dimensionless
O set of obstacles, dimensionless
p pressure, N m−2

P set of processors, dimensionless
R radius, m
r bubble position vector, m
Re Reynolds number, Re = ρl |v − u| db/µl, dimensionless
S speed-up, dimensionless
S characteristic filtered strain rate, s−1

t time, s
T calculation time, s
u liquid velocity vector, m s−1

u liquid mean velocity, m s−1

u′ liquid velocity fluctuation vector, m s−1

v bubble velocity vector, m s−1

v bubble velocity component, m s−1

V volume, m3

W set of neighbor list window, dimensionless
y distance to the wall, m
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Greek letters

ε volume fraction, dimensionless
δt time step, s
∆ subgrid length scale, m
γ shear rate, s−1

Φ volume averaged momentum transfer due to interphase forces, N m−3

µ viscosity, kg m−1 s−1

ψ Lagrangian quantity
Ψ Eulerian quantity
ρ density, kg m−3

σ interfacial tension, N m−1

τ stress tensor, N m−2; film drainage time, s
ω mapping function, dimensionless

Indices

b bubble
c coalescence
D drag
e event
eff effective
G gravity
l liquid
L lift
n normal direction
P pressure
P processor
rel relative
s serial
S subgrid
T turbulent
VM virtual mass
W wall
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6
Numerical study of homogeneous bubbly flow:

influence of the inlet conditions to the
hydrodynamic behavior§

”..and now for something completely different, a man with three
noses.” - Monty Python’s Flying Circus

Abstract

This chapter studies the role of the gas injection pattern on the large scale
structures in a homogeneous pseudo-2D bubble column operated at relatively
high gas hold-up. Seven cases with different inlet configuration have been
studied experimentally by Harteveld et al. [2]. Each of these cases has been
simulated using a (parallel) Euler-Lagrange model developed by Darmana et
al. [3]. The presence of coherent structures for both uniform and non-uniform
gas injection is studied. Furthermore, the influence of the gas injection pattern
on the dynamics is investigated, while the statistical (average and fluctuat-
ing) quantities are compared with the PIV/PTV and LDA measurement data of
Harteveld et al. [2]. The results show that the model resembles the observed
experimental flow structures to a large extent.

§Based on: Darmana et al. [1]
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6.1 Introduction

In the chemical industry bubble columns are often used because of their
simple construction and operation, good heat and mass transfer properties
and isothermal conditions of operation. The flow in a bubble column is
complex and not yet well understood despite the extensive research devoted
to this topic. Based on the flow rates of the gas phase, two typical flow
regimes can be distinguished. At low gas flow rates, the homogeneous
regime is found, which is characterized by uniformly distributed bubbles
and the absence of large scale liquid circulation. On the other hand, when
high flow rates are utilized the heterogeneous regime is found, displaying
non-uniformly distributed bubbles and large scale liquid circulation.
From a practical point of view a bubble column operated in the
homogeneous regime with relatively high gas hold-up and a small uniform
bubble size is desirable, since this configuration provides a large gas-liquid
interface, which improves the mass and heat transfer performance of
the column. It is relatively difficult however to generate a uniform flow
especially at relatively high gas hold-ups, since the coalescence rate
normally increases under these conditions. Due to coalescence a non
uniform bubble size distribution will be generated, which will induce non
uniformity of the flow behavior.
One of the key elements to obtain a homogeneous bubbly flow system is
the employment of uniform injection as suggested by Harteveld et al. [2].
They showed experimentally that a uniform flow without large scale
vortical structures and circulation patterns is obtained with very uniform
injection; and additionally that the vortical structures and circulation can
be re-obtained by introduction of non-aerated zones. Their experimental
results provide valuable data that can be used to validate CFD models and
improve our understanding of the role of the sparger with respect to the
hydrodynamics and prevailing flow structures in bubble columns.
A significant amount of computational work has been performed over the
last decade to reproduce the dynamics of the large scale circulation and
vortical structures computationally. In numerical simulations typically
lab-scale bubble columns are considered at relatively low superficial
gas velocities with a localized gas distributor area at the base of the
column [4–12]. This type of bubble column operation will create a bubble
plume which is meandering irregularly and automatically implies non
uniformity of the gas hold-up throughout the column.
Using either Euler-Euler or Euler-Lagrange models some authors like Deen
et al. [7], Darmana et al. [8] and Buwa et al. [11,12] reported that using the
widely accepted closure correlations (a.o. closures proposed by Tomiyama
et al. [13,14]) both the dynamics and time-averaged behavior in a partially
aerated bubble column at low gas hold-up can be reproduced very well. As
most of the closures are empirically obtained from experiments involving
single bubbles (or droplets), their applicability to systems with high gas



� � � ��� � � � � � �	����
 ‖ 187

hold-ups is often questionable. On the other hand, hardly any correlation
is available in literature which takes into account the effect of the local gas
hold-up. One of the works in this research area (the simulation results
by Behzadi et al. [15]) suggests that using drag and lift correlations,
which account for the elevated dispersed phase fraction, does not yield
satisfactory results.
In this chapter, the experimental cases studied by Harteveld et al. [2]
are simulated by means of a CFD model. The CFD code used in the
present study is the parallel version of the transient three-dimensional
Euler-Lagrange model developed by Darmana et al. [3] (see Chapter
5) supplemented with the force closures proposed by Tomiyama et
al. [13, 14, 16]. The presence of coherent structures for both uniform and
non-uniform gas injectors is studied together with the influence of the gas
injection pattern on the dynamics. In addition the statistical (average
and fluctuating) quantities are compared with the PIV/PTV and LDA
measurement data of Harteveld et al. [2]. The study in particular is meant
to further validate the developed Euler-Lagrange model and investigate
the applicability of both the model and the applied closures to simulate
bubble columns that are operated in a (homogeneous) regime with high gas
hold-up.

6.2 Experiments

The experimental data used in the present study are taken from the work of
Harteveld et al. [2] and will be briefly explained here for the sake of clarity.

6.2.1 Experimental setup

The pseudo-2D bubble column used in the experiments was a 50% down-
scaled version of that used by Becker et al. [4]. A schematic overview of the
experimental setup is given in Fig. 6.1 (a). The column has a width of 24.3cm,
depth of 4.05 cm and a height of 99 cm. The sparger for this column is made
of 95 needles arranged in a triangular pattern with a distance between the
needles of 0.9 cm in the x-direction and 1.04 cm in the y-direction, as shown
in Fig. 6.1 (b).
The nozzles are arranged in seven groups: one central group of 11 needles
and six groups of 14 needles. The ungassed liquid height was 0.70 m. The
gas injection pattern was varied to study its influence on the hydrodynamics
and flow structures. In total seven injection patterns were investigated by
Harteveld et al. [2], which we refer to as case E1 to E7. The superficial ve-
locity of 0.020 m/s was kept constant when the injection pattern was altered.
The patterns are described in Table 6.1 and schematically depicted in Figure
6.2.
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(a) Schematic overview of the experimental setup

24.3 cm

4.05 cm

x

y

1.04 cm

0.9 cm

(b) Geometry of the nozzles.

Figure 6.1: Experimental setup used by Harteveld et al. [2].
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Case E1 Case E2

Case E3 Case E4

Case E5 Case E6

Case E7

Figure 6.2: Gas injection patterns for pseudo-2D column.
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Table 6.1: Gas injection patterns for use in the pseudo-2D column

Pattern Description gas injection Needles
used

Relative
area aerated
zone (%)

Aeration for :

E1 Uniform 95 100 0 6 x/W 6 1.00
E2 Central, 1 wall row off 87 93 0.035 6 x/W 6 0.965
E3 Central, 2 wall row off 81 85 0.075 6 x/W 6 0.925
E4 Central, 3 wall row off 73 78 0.11 6 x/W 6 0.89
E5 Central, 4 wall row off 67 70 0.15 6 x/W 6 0.85
E6 Asymmetric, 4 wall rows off 81 85 x/W 6 0.85
E7 Wall, 3 central rows off 84 89 x/W < 0.445 &

x/W > 0.555

6.2.2 Instantaneous gas and liquid velocity

The large scale structures in the pseudo-2D column were studied with the
aid of Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry
(PTV). A CCD camera (Dalsa Inc.) with a maximal resolution of 512 × 512 pix
was used to record images of the flow. The lower area (0 < z < 0.7 m) of
the column was recorded in two steps, each step imaging an area of
0.24 × 0.35 m, providing a resolution of 0.64 mm/pix. Both the PIV and PTV
analyses were performed with the use of DaVis PIV software from LaVision.
Sequences of images of the bubble motion were recorded and PIV was used
to determine the bubble velocities from these sequences. To obtain bubble
shadows over a large area of the column the column is illuminated from the
back. This leads to bubble velocities averaged in the depth direction of the
column. Fifty pairs of bubble images were captured with a frame rate of
150 Hz. The images were processed using interrogation areas of 32 × 32 pix
with an overlap of 50%. The fifty subsequent velocity fields were then
time-averaged to yield a quasi-instantaneous velocity field corresponding
over a period of 0.33 s.
The liquid flow was determined by putting tracers in the liquid. Relatively
large particles were selected to provide sufficient contrast: polystyrene
particles with a diameter of approximately 2.5 mm. Due to the large inertia
of the particles, only the largest structures were determined. For the PTV
analysis, the images were recorded at a framerate of 30 Hz over a period of
0.6 s. Due to the presence of the bubbles, most tracer particles were only
visible for short periods while some particles were visible for a longer period
resulting in a wide variation of vector density. Since the particles were not
neutrally buoyant (i.e. having a slip velocity of 0.09 m/s), the results cannot
be directly compared with the simulations, but should rather be used to
obtain a qualitative impression of the large flow structures.
The PIV and PTV results were obtained from sets of experiments performed
on different days, therefore the vector fields do not correspond to the same
time instants and the large scale instantaneous structures are different.
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6.2.3 Time-averaged liquid velocity

The average liquid velocity was measured by means of Laser Doppler
Anemometry (LDA). For the LDA measurements, the flow was seeded with
hollow glass particles, which were neutrally buoyant and were 10 µm in
diameter. The equipment consisted of a 4W Spectra-Physics Ar+ laser and
a TSI 9201 colorburst multicolor beam separator. Beam pairs were focused
using a backscatter probe with a lens of 0.122 m focal length. Detected light
was sent to the TSI 9230 colorlink. The axial component was determined
with green (λ = 514.5 µm) beams, the tangential component using blue
(λ = 488 µm) beams. The fringe spacings were 1.28 µm (green channel) and
1.22 µm (blue channel). A preshift frequency of 500 kHz was used. Bursts
were processed with the IFA-750 (TSI) processor. For each measurement
point, a time series of 300 s was used.

6.2.4 Time averaged void fraction

The integral gas hold-up, (εI), was determined by measuring the difference
between the height of the liquid level in the column with and without bubbles
present as follows:

εI =
h− h0

h
(6.1)

where h and h0 respectively are the average height of the liquid surface with
and without aeration.
The spatial distribution of the average gas hold-up is measured by using
glass fiber probes. Light is emitted into one end of a glass fiber while the
other end is put inside the bubble column facing downward. If the 200 µm
diameter tip is located in the water phase, most of the light exits the tip of
the probe. If the tip is located in the gas phase, most of the light is reflected
backwards. The amount of reflected light is recorded and the relative occur-
rence of the phases is determined from this signal, which is done via direct
sampling of the signal and offline software processing. Five fiber probes are
used simultaneously to measure the void fraction over a line from the center
of the column to the wall.
The technique generally underestimates the void fraction for the present ex-
perimental condition by 10−20%, depending on the type of signal processing
that is used. The inacurracy is corrected by applying the so-called low level
criterion and further improved by applying a correction factor which is deter-
mined by comparing the results from the glass fiber probes and the integral
gas hold-up measurements (see Harteveld et al. [2] for further details). The
time series in the experiments for the probes had a length of 1000 s. During
this time, typically some 15, 000 bubbles were collected per probe (εI ≈ 20%).
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6.3 Discrete bubble model

A parallel version of the three-dimensional discrete bubble model (DBM) de-
veloped by Darmana et al. [3] (see Chapter 5) is used to model the pseudo-
2D bubble column. The liquid phase hydrodynamics are represented by the
volume-averaged Navier-Stokes equations while the motion of each individ-
ual bubble is tracked in a Lagrangian fashion.

6.3.1 Bubble dynamics

The motion of each individual bubble is computed from the bubble mass
and momentum equations while accounting for bubble-bubble and bubble-
wall interactions via an encounter model similar in spirit to the model of
Hoomans et al. [17]. The liquid phase contributions are taken into account
by the net force ΣF experienced by each individual bubble. For an incom-
pressible bubble, the equations can be written as:

ρbVb
dv

dt
=
∑

F (6.2)

where ρb, Vb and v respectively represent the density, volume and velocity
of the bubble. The net force acting on each individual bubble is calculated
by considering all the relevant forces. It is composed of separate, uncoupled
contributions which in the present study include: gravity, pressure, drag,
lift, virtual mass and wall forces:

∑

F = FG + FP + FD + FL + FV M + FW (6.3)

Expressions for each of these forces used in the present study can be found
in Table 6.2. Note that the drag, lift and wall force closures used in the
present study are obtained from Tomiyama et al. [13,14].

6.3.2 Liquid phase hydrodynamics

The liquid phase hydrodynamics are represented by the volume-averaged
Navier-Stokes equations, which consist of the continuity and momentum
equations. The presence of bubbles is reflected by the liquid phase volume
fraction ε` and the interphase momentum transfer Φ :

∂

∂t
(ε`ρ`) + ∇ · ε`ρ`u = 0 (6.4)

∂

∂t
(ε`ρ`u) + ∇ · ε`ρ`uu = −ε`∇P −∇ · ε`τ` + ε`ρ`g + Φ (6.5)

where g is the gravity constant, ρ`, u and P respectively the density, velocity
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Table 6.2: Overview of forces acting on a bubble.

Force Closure
FG = ρbVbg −
FP = −Vb∇P −
FD = − 1

2
CDρlπR2

b
|v − u| (v − u) CD = max

h

min
ˆ

16
Re

`

1 + 0.15Re0.687
´

, 48
Re

˜

, 8
3

Eö
Eö+4

i

FL = −CLρ`Vb (v − u) ×∇× u CL =

8

<

:

min [0.288tanh (0.121Re) , f(Eöd)] ; Eöd < 4

f(Eöd); 4 < Eöd ≤ 10

−0.29; Eöd > 10

f(Eöd) = 0.00105Eö3
d − 0.0159Eö2

d − 0.0204Eöd +0.474

Eöd = Eö
E2/3

; E = 1
1+0.163Eö0.757

FV M = −CV Mρ`Vb

“

Dbv

Dbt
− Dbu

Dbt

”

CV M = 0.5

FW = CW Rbρ`
1

D2
bw

|u − v|2 · n CW =



e(−0.933Eo+0.179) 1 < Eo < 5

0.0007Eo + 0.04 Eo ≥ 5

and pressure for the liquid phase. Both phases are assumed to be incom-
pressible, which is a reasonable assumption considering the limited height
of the simulated systems. The liquid phase stress tensor τ` is assumed to
obey the general Newtonian form given by:

τ` = −µeff,`

[

(

(∇u) + (∇u)
T
)

− 2

3
I (∇ · u)

]

(6.6)

where µeff,` is the effective viscosity. In the present model the effective vis-
cosity is composed of two contributions, the molecular viscosity and the
turbulent viscosity:

µeff,` = µL,` + µT,` (6.7)

where the turbulent viscosity µT,` is calculated using the sub-grid scale
(SGS) model of Vreman [18]:

µT,` = 2.5ρ`C
2
S

√

Bβ

αijαij
(6.8)

where Cs is a model constant with a typical value of 0.1, αij = ∂uj/∂xi,
βij = ∆2

mαmiαmj and Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23. ∆i is the

filter width in the i direction.

6.4 Simulations

All of the experimental cases E1 to E7 explained in section 6.2 are modeled
using the three dimensional DBM which we refer to as case S1 to S7 respec-
tively. The applied computational grid consists of 101 × 17 × 290 cells and
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Figure 6.3: Typical boundary conditions used in simulations with the discrete bubble
model. The vertical plane is at j = NY/2 while a slit is defined at k = NZ − 1.

Table 6.3: Cell flags and corresponding cell types used in defining boundary condi-
tions.

flag boundary conditions
1 Interior cell, no boundary conditions specified
2 Impermeable wall, free slip boundary
3 Impermeable wall, no slip boundary
4 Prescribed pressure cell, free slip boundary
5 Corner cell, no boundary conditions specified

the time step, δtflow is set to 1 × 10−3 s while for the bubble tracking (δtbub) a
time step of 1 × 10−4 s is used. The boundary conditions are imposed to the
column using the flag matrix concept of Kuipers et al. [19] as is shown in
Fig. 6.3. The definition of each boundary condition can be found in Table
6.3.
Each nozzle in the experimental setup is modeled as a position in the bot-
tom of the column where bubbles with specific size enter the column with
a fixed velocity. All the bubbles entering the column have a diameter of
4 mm (Harteveld et al. [2] observed that the inlet bubbles may vary from
3.5 − 4.5 mm). The distance between the center of two consecutive bubbles
released from a single hole δb is set to 2.5×Rb. This arrangement is made to
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avoid unnecessary collisions between two consecutive bubbles immediately
after they enter the column. The velocity of bubbles entering the column is
determined from the superficial velocity through the following formula:

vz,enter =
vsδbW ×D

NhVb
(6.9)

with vs the superficial gas velocity, W × D the cross sectional area of the
column and Nh is number of holes.
For all of the nozzles, the vertical position of the bubbles underneath the
bottom plate is generated in such way that none of the bubbles enter the
column at the same time. This was implemented in order to prevent (arti-
ficial) pulsing behavior of the incoming bubbles, which would occur if bub-
bles enter the column through all holes simultaneously. By doing so, the
occurrence of undesired pressure fluctuations at the top of the column was
prevented.
During the simulation on average about 19, 000 computational bubbles are
present in the calculation. This amount of bubbles is resulting from the
balance between bubbles coming into the column through the nozzle and
the bubbles leaving the column from the top surface. For every simulated
second, it takes about 24h calculation time using 8 processors on a SGI Altix
3700 system with Intel Itanium 2, 1.3 GHz processors.

6.5 Result and discussion

In this section the results obtained from the DBM model will be presented
and compared with experimental data. First, the flow structures during
the start-up period resulting from simulation will be shown. Then, the flow
structures present after the flow has fully developed will be compared with
experimental observations. Finally, the comparison between simulation re-
sults and experimental data on the bases of averaged quantities will be ad-
dressed.

6.5.1 Flow structures during the startup period

All simulations were carried out by injecting bubbles into an initially quies-
cent liquid. Depending on the injection pattern, bubbles will rise through
the liquid and occupy the column space with different patterns until a fully
developed condition is reached. Figure 6.4 shows series of snapshots of the
bubble structures during the startup period resulting from the DBM simu-
lation for case S1 (fully aerated column). As can be seen, the bubbles are
rising in a uniform fashion and filling the entire column in the lateral di-
rection right from the start. In a later stage some bubbles are rising faster
than others and split the bubble population into two groups. This situation
however does not sustain for a long time as the bubbles in the lower part
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Figure 6.4: Series of instantaneous solution for case S1 during the startup period
showing the bubble structures and their velocities.

of the column still move in a homogeneous fashion. At about t = 3 s some
bubbles start to leave the top surface and the column starts to exhibit a
uniform flow pattern where bubbles are present everywhere and rising with
relatively uniform velocity.
The results from the partially aerated cases (i.e. Cases S2-S5) can be seen
in Figs. 6.5 and 6.6. Here, the non-aerated regions are introduced starting
from the wall regions and continually increasing toward the center region of
the column. As can be seen, by introducing non-aerated regions, vortices
start to developed on both sides of the bottom corner. The two vortices push
the bubbles toward the center region creating a necking zone that expands
as the non-aerated zone increases. Outside the necking zone, the bubbles
are pushed back toward the left and right wall filling up the entire column
in the lateral direction. In the upper part of the flow, a typical mushroom
shaped structure is found. The roof of the mushroom shape is relatively flat
in case S2 and is gradually transformed showing a more sharp roof as the
non-aerated zone is increased.
After the bubbles start to leave the top surface, the bubble pattern in cases
S2 and S3 show a stable structure where all bubbles are uniformly dis-
tributed through out the entire column and uniformly move in the vertical
direction (except for the bottom corner regions). In cases S4 and S5 how-
ever, the bubbles behave differently. Here, bubbles are moving upward as a
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Figure 6.5: Instantaneous solution for case S2 (top row) and S3 (bottom row) during
the startup period.
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Figure 6.6: Instantaneous solution for case S4 (top row) and S5 (bottom row) during
the startup period.
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Figure 6.7: Instantaneous solution for case S6 (top row) and S7 (bottom row) during
the startup period.
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meandering plume in the center region of the column. The two vortices in
the inlet region have become bigger and stronger. These vortices are strong
enough to trap and drag along large portions of the bubbles for some times
until they finally escape and rejoin the bubbles in the plume region. After a
while however these structures are less pronounced; nevertheless the large
circulation cells are still noticeable.
The startup period for the asymmetric injection pattern (case S6) is shown
in Fig. 6.7 (top). For case S6 the non-aerated region is only near the right
wall, creating vortices in that region. The vortices push the bubbles further
toward the left wall generating a larger vortical zone. Higher up in the col-
umn the bubbles that were pushed aside by the vortices are moving back
toward the right wall filling the column in the lateral direction. Later on, the
same vortices trap large portions of bubbles and drag them down filling up
the gap in the right corner. The top region of the structures is similar with
half of the structures found on the partially aerated bubble columns (cases
S2-S5), showing a mushroom shaped structure which moves in the vertical
direction and later on fills up the entire column except the area close to the
non-aerated inlet.
The flow structures appearing during the startup in the case that the center
region is non-aerated (case S7) is shown in Fig. 6.7 (bottom). In this case,
the bubbles initially rise in two groups separated by the non-aerated zone.
At about z > 10 cm the two groups rejoin, generating a liquid area enclosed
by bubbles. At a higher position, the bubbles are again splitted into two
groups as they ascend to the liquid surface. The two groups of bubbles are
not present for long time and dissappear after about t = 4 s. Afterwards,
the bubbles fill the entire top region of the column uniformly, while the void
region close to the non-aerated area starts to meander irregularly from left
to right.

6.5.2 Fully developed flow structures

Comparison between simulation results and experimental observations af-
ter the flow has fully developed can be seen in Figs. 6.8 to 6.14. Here the
bubble velocity resulting from the DBM simulations is averaged in the depth
direction to mimic the bubble velocity resulting from the PIV measurements,
while the liquid velocity in a slice positioned at y/D = 0.5 is presented. The
figures indicate that the flow structures found in the experiments and sim-
ulations are similar to a large degree. For uniform gas injection the patterns
found in the experiment (case E1) and simulation (case S1) show a perfect
resemblance (see 6.8). In both cases the bubbles are distributed uniformly
over the entire region of the column. Furthermore, for both cases a rectilin-
ear bubble path can be observed close to the inlet area before the interaction
between bubbles and the liquid makes the bubble paths more irregular. The
close resemblance can also be observed in the bubble velocity; i.e. the bub-
bles show a similar tendency to rise with more or less uniform velocity. In
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the liquid velocity no large structures are observed for both cases, which
further confirms the uniformity of the flow field. When small non-aerated
regions are introduced in both lower corners of the column, a small discrep-
ancy between experimental observation (case E2) and the simulation result
(case S2) appears (see Fig. 6.9). In this case, vortices are present in both
corners; however, the vortices predicted by the simulation are bigger in size
than in the experimental counterpart. In the simulation, the bubble paths
are more converged immediately after injection to the column, resulting in
a tighter necking zone compared with the experiment. The bubble velocity
field resulting from case S2 shows that the bubbles are accelerated in the
necking zone, while the velocity in the circulation zone is very low. This situ-
ation is not observed in case E2. In the top of the column, similar structures
are obtained for both cases where bubbles rise uniformly toward the column
surface.
As the non-aerated zone is increased from 7% to 15%, the vortices near both
corners of the inlet region are growing, as is shown in Fig. 6.10. Here,
the experimental result (case E3) shows a pronounced vortical zone on both
sides of the inlet resulting in a necking zone. Comparing with case S3 how-
ever, these vortices are smaller and the necking zone is bigger. The upper
part of the column shows relatively similar structures, where bubbles dis-
tribute almost uniformly in the lateral direction. The accelerated bubbles
in the necking zone are now subsequently propagated to the surface of the
column generating a snake-like bubble plume, where bubbles move faster
compared to the bubbles outside the plume. This structure is observed in
both experiment and simulation, which is also resembled in the liquid veloc-
ity field, where multiple circulation cells are stacked in the axial direction.
A similar situation is also found when the nonaerated zone is further in-
creased from 15% to 22%, as is shown in Fig. 6.11.
Figure 6.12 shows that expanding the nonaerated zone from 22% to 30% re-
sults in a different flow pattern. Here, the simulation result (case S5) shows
a pronounced bubble plume structure, where ”piles of bubbles” are packed
together starting from the inlet up to the column surface. Some of the bub-
bles are trapped in a circulation zone, which is strong enough to drag the
bubbles down and fill up the region outside the bubble plume. This struc-
ture however is less pronounced in the experiment (case E5). Furthermore,
a high bubble velocity in the bubble plume can be observed for both case E5
and S5, which is also reflected in the liquid velocity field.
In the case of the non-aerated zone on one side of the column (i.e. case
E6/S6) the comparison between the simulation and the experiment shows
good resemblance (see Fig. 6.13). Both cases show that the bubbles are
pushed toward the left wall by the strong vortices, while some of the bub-
bles are dragged down by the same vortices. In the top region, bubbles fill
the entire region of the column, however in case E6 the effect of the circu-
lation pattern to the bubble structure is more pronounced compared to the
experimental counterpart. The bubble velocity also shows good similarity
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Figure 6.8: Instantaneous flow structure comparison between case E1 (top row) and
S1 (bottom row). From left to right: bubble positions, bubble velocity and liquid
velocity.
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Figure 6.9: Instantaneous flow structure comparison between case E2 (top row) and
S2 (bottom row). From left to right: bubble positions, bubble velocity and liquid
velocity.
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Figure 6.10: Instantaneous flow structure comparison between case E3 (top row) and
S3 (bottom row). From left to right: bubble positions, bubble velocity and liquid
velocity.
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Figure 6.11: Instantaneous flow structure comparison between case E4 (top row) and
S4 (bottom row). From left to right: bubble positions, bubble velocity and liquid
velocity.
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Figure 6.12: Instantaneous flow structure comparison between case E5 (top row) and
S5 (bottom row). From left to right: bubble positions, bubble velocity and liquid
velocity.
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Figure 6.13: Instantaneous flow structure comparison between case E6 (top row) and
S6 (bottom row). From left to right: bubble positions, bubble velocity and liquid
velocity.
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Figure 6.14: Instantaneous flow structure comparison between case E7 (top row) and
S7 (bottom row). From left to right: bubble positions, bubble velocity and liquid
velocity.
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between the two cases, where bubbles moving in the plume have a high up-
flow velocity, while the bubbles inside the large vortices have a tendency to
move along with it. In the liquid velocity field, several (fixed) circulation cells
are found, which are stacked in the axial direction.
Finally for the cases where the gas is injected near the wall but not in the
center (case E7/S7), again we find good resemblance as shown in Fig. 6.14.
For both cases we find some vortical structure in the lower part of the col-
umn, which move around quite irregularly. These structures however are
not found in the higher regions of the column (z > 0.2 m).

6.5.3 Integral gas hold-up

The comparison of the integral gas hold-up obtained from the simulations
and experiments is given in Fig 6.15. The total gas hold-up in the simu-
lations is obtained by calculating the total volume of all bubbles present in
the column divided by the total volume of the column while the experimental
gas hold-up is obtained by measuring the total expansion of the dispersion
in the column. The figure shows that the simulation results reflect the same
trend as observed in the experiments. By increasing the non-aerated zone
in case 1 to 5 the integral gas hold-up is consistently decreasing despite
the fact that the superficial velocity is kept constant. As the top part of the
column is having a relatively similar bubble population, the decrease in the
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Figure 6.15: Integral gas hold-up, comparison between simulation and experiment.
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gas hold-up can be attributed to the increasing size of vortices close to the
non-aerated region. A similar situation occurs in cases 6 and 7. Quanti-
tative comparison between experiment and simulation however shows that
the simulations consistently overpredict the experimental data with about
25 %.

6.5.4 Time-averaged quantities

The time-averaged quantities in the simulations are calculated using the
following relation:

φ =
1

Nt

Nt
∑

i=1

φi (6.10)

where φ is the quantity at hand, Nt is the number of time steps used in the
averaging. While the RMS value of the quantity is calculated as:

φ′ =
1

Nt

√

√

√

√

Nt
∑

i=1

(

φi − φ
)2

(6.11)

In the experiments the liquid velocity is measured using the LDA technique
as described in sect. 6.2.3. For the uniform gas injection (case 1) the com-
parison between the experimental and simulation results can be found in
Fig. 6.16. As can be seen, the velocity profile resulting from the simulation
shows similarity with the experimental results where upflow is present in
the center region, while downflow is present close to the wall. At a height
of z = 0.05 m a discrepancy between simulation and experiment exists; here
the simulation shows core a peaking velocity profile, while the experiment
shows wall peaking which might be related to the adopted closure for the
lift coefficient. At higher levels in the column the simulation agrees with
the experiment, where the velocity shows upflow in the center of the column
and downflow close to the walls. Further comparison shows that the velocity
profile of the simulation has a higher value in the center compared to the
experiment, while close to the wall the downflow predicted by the simula-
tion is also stronger compared to the experiment. A similar situation can
be seen in the velocity profile in the depth direction. We suspect that this
discrepancy is resulting from the fact that in the experiment liquid is flowing
in between bubbles generating a microscale circulation, generating a rather
flat velocity profile. Meanwhile in the simulation due to the limitation of the
spatial resolution presently used, the liquid tends to move in a large circu-
lation pattern.
The averaged velocity profile in the lower part of the column (i.e. z = 0.05 m)
for all cases is shown in Figs. 6.17 and 6.18. From these figures we can
see that due to the different injection patterns applied in each case, differ-
ent velocity profiles are obtained. In case 1 a relatively flat velocity profile
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Figure 6.16: Velocity profile for uniform gas injection (case 1) at the center line with
y/D = 0.5 (first two rows) and over two lines in the y−direction (z = 0.5 m) (last row).
Continuous line: simulation, dashed line: experiment.
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Figure 6.17: Axial velocity profiles for various gas injection patterns at z = 0.05 m.
Continuous line: simulation, dashed line: experiment.
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Figure 6.18: Axial velocity profiles for various gas injection patterns at z = 0.05 m
(continued). Continuous line: simulation, dashed line: experiment.

is found, while case 2 to case 5 show an upflow in the center region and
downflow close to the walls. For case 6 an asymmetric velocity profile is
present due to the asymmetric aeration. Here, the left part of the column
displays upflow, while the right part shows downflow. Finally, for case 7 we
found upflow on both sides of the wall and downflow in the center region.
Comparison between experiment and simulation shows that for all cases the
velocity profile has been correctly predicted by the present model. Some dis-
crepancy is found in all cases, but the main patterns are the same. For case
2 however we found that the discrepancy is relatively large compared with
the other cases. This is due to the fact that the simulation overpredicts the
vortices in the non-aerated zone as shown in Fig. 6.9.
For all cases velocity profiles in the higher region of the column (i.e. z = 0.7s)
are presented in Figs. 6.19 and 6.20. At this height we found that the av-
eraged velocity profile is relatively flat for all cases. The strong upflow found
at the lower height in cases 2 to 5 is no longer present, which indicates that
the flow is moving rather uniformly close to the column surface. A similar
situation is found in cases 6 and 7, where the assymmetric flow found in
the bottom section of the column has disappeared. The results indicate that
for all cases the predicted velocity profile agrees well with the experimental
data.
Average void fraction profiles for cases 1 and 5 are shown in Fig. 6.21. In
the top region (i.e. z ≥ 0.2 m), almost no difference between cases 1 and 5
is found. However, closer to the bottom case 5 shows that the gas hold-up
is peaking in the center region and is close to zero on both sides close to
the wall. Furthermore, we found that the transition from a bubble plume
structure present in the lower part of the column to the homogeneous bub-
ble structure predicted by the present model appears to develop in a higher
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Figure 6.19: Axial velocity profiles for various gas injection patterns at z = 0.7 m.
Continuous line: simulation, dashed line: experiment.
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Figure 6.20: Axial velocity profiles for various gas injection patterns at z = 0.7 m
(continued). Continuous line: simulation, dashed line: experiment.

region compared to the experimental data. When comparing the simulation
and experimental results, we find that in general the simulation overpre-
dicts the gas hold-up by about 20%, which is consistent with the integral gas
hold-up overprediction described in sect. 6.5.3.
The dynamic behavior is studied via the axial normal stresses. Figures 6.22
and 6.23 shows these stresses at various heights and for various injection
patterns. As can be seen in the experimental data, the stress level is rel-
atively low for all cases except for case E5, where the flow becomes highly
dynamic marked by high stress levels in almost the entire column. In the
simulation the results are slightly different; here we found that for all cases
the stress level is low, except for case S3, where a significant degree of fluc-
tuation is present close to the inlet region. A high degree of fluctuation in
the entire column is found in cases S4 and S5. Compared to case S4 how-
ever, case S5 shows a significantly higher stress level. These results show
that the transition from a stable to a dynamic flow condition occurs earlier
in the simulation compared with the experiment, which indicates that the
present model overpredicts the dynamic behavior of the column. This might
come from the turbulence model, which we suspect becomes less accurate
as the local gas hold-up is increased.

6.6 Conclusions

In this chapter, the discrete bubble model is validated against the experi-
mental data of Harteveld et al. [2] where seven injection patterns are studied
to investigate their influence on the flow structure. We found that the model
in general is able to reproduce the observed variations rather well. For all
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Figure 6.21: Void fraction profiles for case 1 and 5, over the line y = 0. Continuous
line: simulation, dashed line: experiment.



� � � ����� � � � 
 � ����
 ‖ 217

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

z/H [−]

u’
zu’

z [m
2 /s

2 ]

case 1

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

z/H [−]

u’
zu’

z [m
2 /s

2 ]

case 2

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

z/H [−]

u’
zu’

z [m
2 /s

2 ]

case 3

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

z/H [−]

u’
zu’

z [m
2 /s

2 ]

case 4

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

z/H [−]

u’
zu’

z [m
2 /s

2 ]

case 5

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

z/H [−]

u’
zu’

z [m
2 /s

2 ]

case 6

Figure 6.22: Axial normal stresses for the various injection patterns. Continuous line:
simulation, dashed line: experiment.
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Figure 6.23: Axial normal stresses for the various injection patterns (continued). Con-
tinuous line: simulation, dashed line: experiment.

cases the integral gas hold-up is overpredicted by almost 25% by the present
model. The trends of the change in gas hold-up however agree with the
experiment. The velocity profiles in general agree with the experiment, how-
ever we have noticed that the simulation results tends to produce stronger
upflow in the center of the column and stronger downflow close the walls.
We suspect that this behavior is due to the fact that in the experiments the
liquid is moving in between the bubbles while in the simulation due to the
limited spatial resolution the liquid moves in a large circulation pattern. Fi-
nally, the simulations display an earlier transition from the stable to the
dynamic regime compared with the experimental data, which might result
from an innacurracy of the turbulence model at high gas hold-ups. Further
study to investigate the validity of the turbulence model at high gas hold-ups
is necessary.
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Notation

C model coefficient, dimensionless
d diameter, m
Eö Eötvös number, dimensionless
F force vector, N
g gravity acceleration, m s−2

I unit tensor, dimensionless
P pressure, N m−2

R radius, m
Re Reynolds number, dimensionless
S source term in the species balance equation, kg m−3 s−1

S characteristic filtered strain rate, s−1

t time, s
u liquid velocity vector, m s−1

v bubble velocity vector, m s−1

V volume, m3

Greek letters

4 subgrid length scale, m
ε volume fraction, dimensionless
µ viscosity, kg m−1 s−1

Φ volume averaged momentum transfer due to interphase forces,
N m−3

ρ density, kg m−3

σ interfacial tension, N m−1

τ stress tensor, N m−2

Indices

b bubble
cell computational cell
D drag
eff effective
G gravity
` liquid
L lift
P pressure
S subgrid
T turbulent
VM virtual mass
W wall
∗ interfacial equilibrium value
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